
ISA Technical Report draft TR88.00.05 Machine and Unit States

 (An implementation example of ANSI/ISA 88)

INFORMATIVE DOCUMENT

April 2008
ISBN: -to-be-assigned-
Copyright © 2000-2007 by the Instrumentation, Systems and Automation Society. All rights reserved. Not for resale. Printed in the United States of America.

ISA

67 Alexander Drive

P. O. Box 12277

Research Triangle Park, NC 27709 USA

Preface

USE ISA BOILERPLATE FOR TR
The following people served as active members in preparation of this document:

	Name
	Company

	
	

	David Arens
	Bosch Rexroth

	Ulrich Arlt
	Rockwell Automation

	Garth Basson
	SAB Miller

	David Bauman
	ISA / OMAC

	David Bell
	ATR Distribution (Wonderware)

	Dennis Brandl
	BR&L Consulting

	Mario Broucke
	Siemens AG, A&D

	David Chappell
	CMAA-LLC

	Mark DeCramer
	WAGO

	Darren Elliott
	Rockwell Automation

	Joe Faust
	Douglas Machine Company

	Robert Freller
	Siemens AG, F&B

	Dominik Gludowatz
	Elau

	Dr. Holger Grzonka
	Siemens Energy & Automation

	Brian Hedges
	Rockwell Automation

	Roland Heymann
	Siemens AG, A&D

	Thomas Hopfgartner
	B&R Automation

	Gerd Hoppe
	Beckhoff

	Joseph Jablonski
	Acumence Inc

	Tom Jensen
	Elau

	Uwe Keiter
	B&R Automation

	Barry Kluener
	Alexander & Associates

	Eric Knopp
	Rockwell Automation

	Mike Lamping
	Procter & Gamble

	Willie Lotz
	SAB Miller Brewing Co.

	Ron MacDonald
	Nestlé

	Paul Nowicki
	Rockwell Automation

	Fabian Ochoa M.
	SAB Miller Brewing Co.

	Alex Pereira
	KHS

	Mike Pieper
	Siemens Energy & Automation

	Detlef Rausch
	Siemens AG, A&D

	Dan Seger
	Rockwell Automation

	Larry Trunek
	SAB Miller

	Andre Uhl
	Elau

	Eelco VanDerWal
	PLCopen

	Dr. Tobias Voigt
	Weihenstephan University

CONTENTS

9Foreword

9Abstract

9Key words

111
Scope

112
References

123
Overview

123.1
Introduction

133.2
Personnel and Environmental Protection

144
Unit / Machine States

144.1
Definition

144.2
Types of States

144.3
Defined States

144.4
State Transitions and State Commands

144.4.1
Definition

144.4.2
Types of State Commands

144.4.3
Examples of State Transitions

144.5
State Model

144.5.1
Base State Model

145
Modes

145.1
Unit / Machine Control Modes

145.2
Unit / Machine Control Mode Management

146
Common Unit / Machine Mode Examples

146.1
Producing Mode

146.2
Maintenance Mode

146.3
Manual Mode

146.4
User Mode

147
Automated Machine Functional Tag Description

147.1
Introduction to PackTags

147.2
Tag Types

147.3
PackTags Name Strings

147.4
Date Types, Units, and Ranges

147.4.1
Structured Data Types

147.5
Tag Details

147.5.1
Command Tags

147.5.1.1
Command.UnitMode

147.5.1.2
Command.UnitModeChangeRequest

147.5.1.3
Command.MachSpeed

147.5.1.4
Command.MaterialInterlocks

147.5.1.5
Command.CntrlCmd

147.5.1.6
Command.CmdChangeRequest

147.5.1.7
Command.RemoteInterface[#]

147.5.1.8
Command.Parameter[#]

147.5.1.9
Command.Product[#]

147.5.2
Status Tags

147.5.2.1
Status.UnitModeCurrent

147.5.2.2
Status.UnitModeRequested

147.5.2.3
Status.UnitModeChangeInProcess

147.5.2.4
Status.StateCurrent

147.5.2.5
Status.StateRequested

147.5.2.6
Status.StateChangeInProcess

147.5.2.7
Status.MachSpeed

147.5.2.8
Status.CurMachSpeed

147.5.2.9
Status.MaterialInterlocks

147.5.2.10
Status.RemoteInterface[#]

147.5.2.11
Status.Parameter[#]

147.5.2.12
Status.Product[#]

147.5.3
Administration Tags

147.5.3.1
Admin.Parameter[#]

147.5.3.2
Admin.Alarm[#]

147.5.3.3
Admin.AlarmExtent

147.5.3.4
Admin.AlarmHistory[#]

147.5.3.5
Admin.AlarmHistoryExtent

147.5.3.6
Admin.ModeCurrentTime[#]

147.5.3.7
Admin.ModeCumulativeTime[#]

147.5.3.8
Admin.StateCurrentTime[#,#]

147.5.3.9
Admin.StateCumulativeTime[#,#]

147.5.3.10
Admin.ProdConsumedCount[#]

147.5.3.11
Admin.ProdProcessedCount[#]

147.5.3.12
Admin.ProdDefectiveCount[#]

147.5.3.13
Admin.AccTimeSinceReset

147.5.3.14
Admin.MachDesignSpeed

147.5.3.15
Admin.PACDateTime

148
Software Implementation Examples

148.1
Example 1

148.1.1
Example Details

148.2
Example 2

148.2.1
Overview

148.2.2
What is the Machine Template?

148.2.3
Programming Example

148.2.4
Vertical integration

148.3
Example 3

148.3.1
Example Details

148.4
Example 4

148.4.1
Overview

148.4.2
Automation Templates

148.4.3
HMI Templates

148.5
Example 5

148.5.1
Overview

148.6
Example 6

148.6.1
Example Details

148.6.2
Graphic Example

149
OEE Implementation Examples

149.1
OEE Definition

149.1.1
Availability Definition

149.1.2
Performance Definition

149.1.3
Quality Definition

149.2
Calculating a Real-Time OEE in a PLC or HMI

149.2.1
Availability

149.2.2
Performance

149.2.3
Quality

149.2.4
Overall Real-Time OEE Calculation

149.2.5
Limitations of Real-Time OEE Equation

149.3
Calculating a complex historical OEE using a historical database based system

149.3.1
Further Analysis of Performance

149.3.1.1
Low Speed Losses

149.3.1.2
Small Stop Losses

149.3.1.3
Mode or State Transition

149.3.1.4
Loop Through the Active Alarm File

149.3.2
Limitations of a historical OEE calculation

149.4
DIN 8782 OEE Harmonization Example

149.4.1
Definitions

149.4.2
General Operational Efficiency Examples

14A.1
Alarm Codes

14A.2
Weihenstephan Harmonization

List of figures and TABLES

12Figure 1: Automated Machines applied to ISA88.01 Physical Model

14Figure 2: Example States for Automated Machines

14Table 1 : Complete List of Machine States

14Table 2 : Example Transition Matrix of Local or Remote State Commands

14Table 3: Example Transition Matrix of Machine Conditions Causing a State Transition

14Figure 3: Base State Model Visualization

14Figure 4: Unit/Machine Control Modes

14Figure 5: Multi-Mode Example Diagram (Producing Mode States)

14Figure 6: Maintenance Operations State Model

14Figure 7: Maintenance Mode Execution Model

14Figure 8: Manual Operations State Model

14Figure 9: Manual Mode Execution Model

14Figure 10: Automatic Weihenstephan Operations State Model

14Figure 11: Tag Information Flow

14Table 4: Command Tags

14Table 5 : Status Tags

14Table 6 : Administration Tags

14Figure 12: Unit Mode Change Example Sequence

14Figure 7: Unit Mode Change Example Sequence

14Figure 8: State Change Example Sequence

14Figure 9: Example 8.1 CPU Software Tree

14Figure 10: Example 8.1 Initialization in Structured Text

14Figure 11: Example 8.1 Visualization Sample of Operator Interface

14Figure 12: Example 8.2 Visualization Sample of Production Mode

14Figure 13: Example 8.2 Programming Sample of Mode Manager

14Figure 14: Example 8.2 Sample Tag Structure

14Figure 15: Example 8.2 Visualization Sample for Implementation Support

14Figure 16: Example 8.3 Explorer View of Software

14Figure 17: Example 8.3 State Routine Layout

14Figure 18: Example 8.3 Partial Sequential Function Chart of State Engine

14Figure 19: Example 8.3 PackTags User Defined Tags

14Figure 20: Example 8.4 State Routine Template

14Figure 21: Example 8.4 Mode Manager Interface with Production Mode

14Figure 22: Example 8.4 Status Tags Template Layout

14Figure 23: Example 8.4 Operator Visualization for Base State Model

14Figure 24: Example 8.5 PackML Template Block

14Figure 25: Example 8.5 Structure Flow Chart for Base State Model

14Figure 26: Example 8.6 Template Toolbox

14Figure 27: Example 8.6 Sequencer Program for Automatic Mode State Model

14Figure 28: Example 8.6 Graphic Example of User Interface

14Figure 29: Example 8.6 Unit Control

14Figure 30: Example 8.6 Parameter Array Structure

14Figure 31: Example 8.6 Product Array Structure

14Figure 39: OEE Waterfall Diagram

14Figure 40: DIN 8782 OEE Diagram

Foreword

The ISA SP88 committee has defined a batch standard that provides terminology and a consistent set of concepts and models for batch manufacturing plants and batch control. These standards, however, were not defined in the context of Packaging machines, or machines that perform discrete operations. As the ANSI/ISA 88 batch standard continues to evolve, the context of the standard models may be extended to include the entire plant, integrating the software definitions of batch, packaging, converting and warehousing. Currently, as noted in this report there is a need to begin consideration of the ANSI/ISA 88 standard in the context of differing automated machinery.

This is an informative document. This document contains definitive implementation examples of definitions and models in order to establish a common presentation and high level software architecture or layout. The terms and definitions used in this document are harmonized, as much as possible, with ISA88.01, the document is not definitive in this respect. The models used, and applied, in this document are an extension of the models presented in ISA88.01 and are shown how they are applied to differing machine functionality. Discrete machine functionality is expressed graphically in several situations and described. The intent of this document is proposing specific implementation options and indicates a preference for a specific set of machine types.

Abstract

The “standard” method of programming discrete machines is generally considered to be solely dependent on the machine and the software engineer, or control systems programmer. This constant change offers little additional value and generally increases the total costs, from the designing and building of the process to operating and maintaining the system by the end user. This Technical Report on the implementation of ISA88.01 in discrete machines breaks this paradigm and demonstrates how to apply the ISA88.01 standard to discrete machine states and modes. The implementation of the standard will create a standard programming methodology as well as consistent method to install, communicate, operate and maintain a piece of unit / machine. This Technical Report gives examples of general and specific machine state models and procedural methods. The report sites real control examples as implementations, and provide specific tag naming conventions; it also sites a number of common terms that are consistent with batch processing and ANSI/ISA 88.01.

Key words

state machine, state model, mode manager, machine state, unit control mode, PackML, state commands, command tags, status tags, administration tags, base state model, state engine, functional programming, modular programming, machine control software, discrete machine software, PackTags, Weihenstephan, Production Data Acquisition, PDA, ISA88.01, TR88.

Introduction
When the ISA88.01 standard is applied to applications across a plant, there is a need to align the terminologies, models and key definitions between different process types; Continuous, Batch, and Discrete processes. Discrete processes involve machines found in the packaging, converting, and material handling applications. The operation of these machines is typically defined by the OEM, system integrator, end user, or is industry specific.

A task group with members from technology providers, OEMs, system integrators, and end users were chartered by the OMAC / ISA Packaging Workgroup (Open, Modular, Architecture, Control). The task group generated the PackML guidelines as a method to show how the ISA88.01 concepts could be extended into packaging machinery. This technical report is intended to build upon, formalize the concepts of the PackML guidelines and to show application examples.

The purpose of the technical report is to

· Explain functional state programming for automated machines.

· Identify definitions for common terminology.

· Explain to practitioners how to use state programming for automated machines.

· Provide actual implementation examples and templates from automation control vendors.

· Identify a common tag structure for automated machines in order to:

· Provide for “Connect & Pack” functionality

· Provide functional interoperability and a consistent look and feel across the plant floor.

· Provide consistent tag structure for connection to plant MES and enterprise systems.

Machine and Unit States

ISA TR88.00.05
1 Scope

Since its inception, the OMAC Packaging Machine Language (PackML) group has been using a variety of information sources and technical documents to define a common approach, or machine language, for automated machines. The primary goals are to encourage a common “look and feel” across a plant floor, and to enable and encourage industry innovation. The PackML group is recognized globally and consists of control vendors, OEM’s, system integrators, universities, and end users, which collaborate on definitions that endeavour to be consistent with the ISA88 standards and consistent with the technology and the changing needs of a majority of automated machinery. The term “machine” used in this report is equivalent to an ISA88 “Unit”.

This has led to the following:

1. A definition of machine/unit state types

2. A definition of machine/unit operating modes

3. A definition of unit control mode management

4. State models, State descriptions, and transitions

2 References

The following documents contain provisions that are referenced in this text. At the time of publication the editions indicated were valid. All documents are subject to revision, and parties to agreements based on this technical report are encouraged to investigate the possibility of applying the most recent editions of the reference documents indicated below.

· ANSI/ISA-88.00.01-1995 Batch Control - Part 1: Models and Terminologies

· ANSI/ISA-88.00.02-2001 Batch Control - Part 2: Data Structures and Guidelines for Languages

· ANSI/ISA-88.00.03-2003 Batch Control - Part 3: General and Site Recipe Models and Representation

· ANSI/ISA-88.00.04-2006 Batch Control - Part 4: Batch Production Records

· IEC 61131-1 Standard for Programmable logic controllers (PLCs), General Information

· IEC 61131-3 Standard for Programmable logic controllers (PLCs), Programming Languages

· IEC 61131-4 Standard for Programmable logic controllers (PLCs), User Guidelines

· PLCopen TC5 Safety Certification

· Weihenstephan Standard – Part 2 Version 2005 http://www.wzw.tum.de/lvt/englisch/Weihenstephaner_Standards_GB.html
· ANSI/ISA-95.00.01-2000 Enterprise – Control System Integration - Part 1: Models and Terminologies

· ANSI/ISA-95.00.02-2001 Enterprise – Control System Integration - Part 2: Object Model Attributes
· ISA Draft 95.00.05, Enterprise - Control System Integration, - Part 5: Business to Manufacturing Transactions
· DIN 8782, Beverage Packaging Technology; Terminology Associated with Filling Plants and their Constituent Machines

3 Overview

3.1 Introduction

Automated machine programming is typically done by software engineers, machine designers, and system integrators. The form and style of the machine software ranges from modular, to monolithic in nature. The objective of this report is to specify the application of a common software methodology that is consistent with the modular programming of automated machinery as described in the draft ISA 88.05 standard. The naming of specific software modules, or operational aspects, is dependent on the needs of the automated machine. This report shall be interpreted in a general sense to encompass all automated machinery. It is focused on the overall operation and functionality of automated machines. This document enables a consistent method of machine interconnection and operability. The diagrams and examples shown in the report are specific in terms of the functionality they provide but can be implemented in various ways to fit most automated machinery and machine controllers; therefore the figures do not follow the standard UML guidelines for depiction of software flow.

If automated machinery is modelled in an ISA88.01 Physical hierarchy, the example mapping shown in Figure 1 is possible. The example in this document will assume that a machine can represent the unit level in the ISA88 hierarchy.
[image: image1.png]Form Fill Seal Bagger

e seae

Packing Line(s)

&g Primary, secondary. tertiary
—<t grom

Machine

Process|
&g Bagger. Filler. Capper.
Labeler

R E—:| Station of a Filler (Station, Section,
Unit Function)

&.g. Forming station, material

e ’—..:..:‘TL_‘ injection
N — Actuator. sensor or positioner

Machine Layout

=3 b e.g. servomotor

Figure 1: Automated Machines applied to ISA88.01 Physical Model

Furthermore, the objective of this document is to provide a definition of machine (unit) modes and states as well as state models corresponding to the different machine operating modes. Although the use of the state diagram and unit modes are extremely extensible, the methods governing the way in which the modes and states are used is not. This technical report demonstrates the flexibility and ease in which this method can be implemented in terms of ISA 88, as well as how it provides the “common look and feel” desired in automated machines. This document only specifies the standard names and semantics for commonly used high level machine states as per a Base State Model

The ISA88.01 standard describes example modes and states as applied to equipment entities and procedural elements. This report identifies unit/machine modes and states which should be considered an augmentation of the ISA88.01 standard in order to meet the needs of automated machine processing.

3.2 Personnel and Environmental Protection

The Personnel and Environmental Protection control activity provides safety for people and the environment. No control activity should intervene between Personnel and Environmental Protection and the field hardware it is designed to operate with. Personnel and Environmental Protection is, by definition, separate from the higher level control activities in this document. It may map to more than one software level of the equipment as desired.

A complete discussion of personnel and environmental protection, the classification of these types of systems, and the segregation of levels of interlocks within these systems is a topic of its own and beyond the scope of this document.

4 Unit / Machine States

4.1 Definition

A unit / machine State completely defines the current condition of a machine. A Machine state is expressed as an ordered procedure, or programming routine, that can consist of one or more commands to other Procedural Elements
 or equipment entities, or consist of the status of a Procedural Element1 or equipment entity, or both. In performing the function specified by the state the Machine state will issue a set of commands to the machine Procedural Elements1 or equipment entities which in turn can report status. The Machine state will perform conditional logic which will either lead to further execution within the current machine state or cause a transition to another state. The Machine State is the result of previous activities that had taken place in the Machine to change the previous State.

Only one major processing activity may be active in one Machine at any time
. The linear sequence of major activities will drive a strictly sequentially ordered flow of control from one State to the next State – no parallel States operating on the same equipment entity are allowed to be active in one Machine at the same time.

Note: At a lower level, the minor sub-activities (or control procedures) that are combined to form a major activity at the Machine Operation level, may indeed be taking place in parallel as well as in sequence as defined in ISA 88.01 for Equipment Phases.

4.2 Types of States

For the purposes of understanding three machine state types are defined:

· Acting State: A state which represents some processing activity. It implies the single or repeated execution of processing steps in a logical order, for a finite time or until a specific condition has been reached. In ANSI/ISA 88.01 these are referred to Transient states, those states ending in “ING”.

· Wait State: A state used to identify that a machine has achieved a defined set of conditions. In such a state, the machine is maintaining a status until transitioning to an Acting state or the Dual state. In ANSI/ISA 88.01 this was referred to as a “Final” or Quiescent” state.

· Dual State: A Wait state that is causing the machine to behave as in an Acting state. The dual state is representative of a machine state that can be continuously transitioning between Acting and Waiting, and looping, as defined by the logical sequence required. As noted in ANSI/ISA 88.01 the “Execute”, or “Running”, state is a “Transient” state. This Machine state has been re-characterized to also include the diversity of operation found in packaging and discrete machines.

4.3 Defined States

There are a fixed number of states defined in the Base State Model. This report establishes an example set of possible unit / machine states illustrated in the figure below, Figure 2. As shown this set of states has similarity to the ISA88.01 example states but has additional states defined for machine processing.

[image: image2.emf]Value

Unit / Machine

States Wait Acting

<not defined> 1 Clearing x

Stopped 2 Stopped x

<not defined> 3 Starting x

Idle 4 Idle x

Paused 5 Suspended x

Running 6 Execute x x

Stopping 7 Stopping x

Aborting 8 Aborting x

Aborted 9 Aborted x

Holding 10 Holding x

Held 11 Held x

Restarting 12 Unholding x

Pausing 13 Suspending x

<not defined> 14 Unsuspending x

<not defined> 15 Resetting x

<not defined> 16 Completing x

Complete 17 Complete x

ISA 88.01

Example

Procedural

States

Technical Report Equipment States

Figure 2: Example States for Automated Machines

Formal definitions of theses states are given below:

Table 1 : Complete List of Machine States
	State Name
	Description

	STOPPED
	State Type: Wait

The machine is powered and stationary after completing the STOPPING state. All communications with other systems are functioning (If applicable). A Reset command will cause an exit from STOPPED to the RESETTING state.

	STARTING
	State Type: Acting
This state provides the steps needed to start the machine and is a result of a starting type command (local or remote). Following this command the machine will begin to “execute”.

	IDLE

	State Type: Wait
This is a State which indicates that RESETTING is complete. This state maintains the machine conditions which were achieved during the RESETTING state,and performs operations required when the machine is in IDLE..

	SUSPENDING
	State Type: Acting

This state is a result of a change in monitored conditions due to process conditions or factors. The trigger event will cause a temporary suspension of the EXECUTE state. SUSPENDING is typically the result of starvation of upstream material in-feeds (i.e. container feed, beverage feed, crown feed, lubricant feed, etc.) that is outside the dynamic speed control range or a downstream out-feed blockage that prevents the machine from EXECUTING continued steady production. During the controlled sequence of SUSPENDING the machine will transition to a SUSPENDED state. The SUSPENDING state might be forced by the operator.

	SUSPENDED
	State Type: Wait
The machine may be running at a relevant set point speed but there is no product being produced while the machine is waiting for external process conditions to return to normal. When the offending process conditions return to normal, the SUSPENDED state will transition to UNSUSPENDING and hence continue towards the normal EXECUTE state.

The SUSPENDED state can be reached as a result of abnormal external process conditions and differs from HELD in that HELD is typically a result of an operator request or an automatically detected machine fault condition that may be corrected and result in a recoverable EXECUTE

	UNSUSPENDING
	State Type: Acting

This state is a result of a machine generated request from SUSPENDED state to go back to the EXECUTE state. The actions of this state may include: ramping up speeds, turning on vacuums, the re-engagement of clutches. This state is done prior to EXECUTE state, and prepares the machine for the EXECUTE state.

	EXECUTE
	State Type: Dual
Once the machine is processing materials it is deemed to be executing or in the EXECUTE state. Different machine modes will result in specific types of EXECUTE activities. For example, if the machine is in the “Production” mode, the EXECUTE will result in products being produced, while in “Clean Out” mode the EXECUTE state refers to the action of cleaning the machine.

	STOPPING
	State Type: Acting
This state executes the logic which brings the machine to a controlled stop as reflected by the STOPPED state. Normal STARTING of the machine can not be initiated unless RESETTING had taken place.

	ABORTING
	State Type: Acting

The ABORTED state can be entered at any time in response to the Abort command or on the occurrence of a machine fault. The aborting logic will bring the machine to a rapid safe stop. Operation of the Emergency Stop will cause the machine to be tripped by its safety system. It will also provide a signal to initiate the ABORTING State.

	ABORTED
	State Type: Wait

This state maintains machine status information relevant to the Abort condition. The machine can only exit the ABORTED state after an explicit Clear command, subsequently to manual intervention to correct and reset the detected machine faults.

	HOLDING
	State Type: Acting

When the machine is in the EXECUTE state, the Hold command can be used to start HOLDING logic which brings the machine to a controlled stop or to a state which represents HELD for the particular unit control mode. A machine can go into this state either when an internal equipment fault is automatically detected or by an operator command. The Hold command offers the operator a safe way to intervene manually in the process (such as removing a broken bottle from the in-feed) and restarting execution when conditions are safe. To be able to restart production correctly after the HELD state, all relevant process set-points and return status of the procedures at the time of receiving the Hold command must be saved in the machine controller when executing the HOLDING procedure.

	HELD
	State Type: Wait

The HELD state holds the machine's operation while material blockages are cleared, or to stop throughput while a downstream problem is resolved, or enable the safe correction of an equipment fault before the production may be resumed.

	UNHOLDING
	State Type: Acting

The UNHOLDING state is a response to an operator command to resume the EXECUTE state. Issuing the Unhold command will retrieve the saved set-points and return the status conditions to prepare the machine to re-enter the normal EXECUTE state. Note that an operator Unhold command is always required and UNHOLDING can never be initiated automatically.

	COMPLETING
	State Type: Acting

This state is an automatic response from the EXECUTE state. Normal operation has run to completion, i.e. processing of material at the infeed will stop.

	COMPLETE
	State Type: Wait

The machine has finished the COMPLETING state and is now waiting for a Reset command before transitioning to the RESETTING state.

	RESETTING
	State Type: Acting

This state is the result of a RESET command from the STOPPED or complete state. RESETTING will typically cause a machine to sound a horn and place the machine in a state where components are energized awaiting a START command.

	CLEARING
	State Type: Acting

Initiated by a state command to clear faults that may have occurred when ABORTING, and are present in the ABORTED state before proceeding to a STOPPED state.

4.4 State Transitions and State Commands

4.4.1 Definition

A state transition is defined as a passage from one state to another. Transitions between states will occur as a result of a local, remote, or procedural State Command. State Commands are procedural elements that in effect cause a state transition to occur.

4.4.2 Types of State Commands

State Commands are comprised of one or a combination of the following types:

· Operator intervention.

· Response to the status of one or more procedural elements.

· Response to machine conditions.

· The completion of an Acting state procedure.

· Supervisory or remote system intervention.

4.4.3 Examples of State Transitions

An Example Transition Matrix for local or remote State Commands generated by an operator is shown in table 2. After every Acting state, as can be seen in table 2, a procedural element is required that will indicate the Acting State is Complete, or a command is required to Stop or Abort the Acting state. The State Complete indication within the Acting state procedure will cause a state transition to occur.

Similarly, another Example Transition Matrix of machine conditions causing a state change is shown in table 3. The objective of this table is to depict the machine conditions as well operator inputs that will cause a state transition.

	
	
	
	
	
	State Commands
	
	
	
	
	State

	Current State
	Start
	Reset
	Hold
	Un-Hold
	Suspend
	Un-Suspend
	Clear
	Stop
	Abort
	Complete

	IDLE
	STARTING
	
	
	
	
	
	
	STOPPING
	ABORTING
	

	STARTING
	
	
	
	
	
	
	
	STOPPING
	ABORTING
	EXECUTE

	EXECUTE
	
	
	HOLDING
	
	SUSPENDING
	
	
	STOPPING
	ABORTING
	COMPLETING

	COMPLETING
	
	
	
	
	
	
	
	STOPPING
	ABORTING
	COMPLETE

	COMPLETE
	
	RESETTING
	
	
	
	
	
	STOPPING
	ABORTING
	

	RESETTING
	
	
	
	
	
	
	
	STOPPING
	ABORTING
	IDLE

	HOLDING
	
	
	
	
	
	
	
	STOPPING
	ABORTING
	HELD

	HELD
	
	
	
	UNHOLDING
	
	
	
	STOPPING
	ABORTING
	

	UNHOLDING
	
	
	
	
	
	
	
	STOPPING
	ABORTING
	EXECUTE

	SUSPENDING
	
	
	
	
	
	
	
	STOPPING
	ABORTING
	SUSPENDED

	SUSPENDED
	
	
	
	
	
	UNSUSPENDING
	
	STOPPING
	ABORTING
	

	UNSUSPENDING
	
	
	
	
	
	
	
	STOPPING
	ABORTING
	EXECUTE

	STOPPING
	
	
	
	
	
	
	
	
	ABORTING
	STOPPED

	STOPPED
	
	RESETTING
	
	
	
	
	
	
	ABORTING
	

	ABORTING
	
	
	
	
	
	
	
	
	
	ABORTED

	ABORTED
	
	
	
	
	
	
	CLEARING
	
	
	

	CLEARING
	
	
	
	
	
	
	
	
	ABORTING
	STOPPED

Table 2 : Example Transition Matrix of Local or Remote State Commands

	
	
	
	
	
	
	Example Machine Commands
	
	
	
	
	

	Current State
	Operator Start
	Carton Magazine Low
	Carton Magazine Full
	Downstream Not Ready
	Downstream Ready
	E-Stop
	No Product Present
	Product Present
	Operator Stop
	Product Count Reached
	Clear Faults

	IDLE
	Start
	
	
	
	
	Abort
	
	
	Stop
	
	

	STARTING
	
	
	
	
	
	Abort
	
	
	Stop
	
	

	EXECUTE
	
	Hold
	
	Suspend
	
	Abort
	Suspend
	
	Stop
	Complete
	

	COMPLETING
	
	
	
	
	
	Abort
	
	
	Stop
	
	

	COMPLETE
	
	
	
	
	
	Abort
	
	
	Stop
	
	

	RESETTING
	
	
	
	
	
	Abort
	
	
	Stop
	
	

	HOLDING
	
	
	
	
	
	Abort
	
	
	Stop
	
	

	HELD
	
	
	UnHold
	
	
	Abort
	
	
	Stop
	
	

	UNHOLDING
	
	
	
	
	
	Abort
	
	
	Stop
	
	

	SUSPENDING
	
	
	
	
	
	Abort
	
	
	Stop
	
	

	SUSPENDED
	
	
	
	
	UnSuspend
	Abort
	
	UnSuspending
	Stop
	
	

	UNSUSPENDING
	
	
	
	
	
	Abort
	
	
	Stop
	
	

	STOPPING
	
	
	
	
	
	Abort
	
	
	
	
	

	STOPPED
	
	
	
	
	
	Abort
	
	
	
	
	

	ABORTING
	
	
	
	
	
	
	
	
	
	
	

	ABORTED
	
	
	
	
	
	
	
	
	
	
	Clear

	CLEARING
	
	
	
	
	
	Abort
	
	
	
	
	

Table 3: Example Transition Matrix of Machine Conditions Causing a State Transition

4.5 State Model

A State Model completely defines an operation of a machine. In a State Model, states are arranged in an ordered fashion that is consistent with the specified operation of the machine. The specific states required are dependent on the machine operation.

The compilation of all defined functional states and their transitions is called the Base State Model.

4.5.1 Base State Model

The Base State Model represents the complete set of defined states, state commands, and state transitions. All operations will be a subset of the base state model. The Base State Model is depicted in the figure below:

[image: image3.png]AHOLONG - un- ol —

le—sc—iclomc

L.

s [

1

; [— —
AN o, :
¥ v

SC = State Complete

[image: image4.png]oLe

 = Wait State

[image: image5.png]RESETTING

 = Acting State

[image: image6.png]execute

 = Dual State

States within the dark gray outline can transition to the STOPPING state or the ABORTING state.

States within the light gray outlined can transition to ABORTING state.

Figure 3: Base State Model Visualization

5 Modes

The ISA88.01 standard provides a set of modes for equipment entities and procedural elements. This report establishes modes for automated machines that are considered different than the ISA88.01 procedural modes (automatic, semi-automatic, and manual). The ISA88.01 Procedural modes describe the way procedures operate. Procedural control modes are not common in Automated Machinery. They are provided for in this report by noting they may exist, but are not considered in the scope of this work and are not included in the tag table.

For automated machines, the example in this report establishes unit/machine modes in order to allow a machine designer to adjust the set of states, state commands and state transitions a machine may follow given different operating circumstances. The set of defined unit/machine control modes is shown in Figure 4 and described below.

[image: image7.wmf]ISA 88.01

Unit / Machine

Example Modes

Control Modes

Value

Undefined

0

Producing

1

Maintenance

2

Manual

3

<future reserve>

4

<future reserve>

5

<future reserve>

6

<future reserve>

7

<not defined>

<future reserve>

8

<future reserve>

9

<future reserve>

10

<future reserve>

11

<future reserve>

12

<future reserve>

13

<future reserve>

14

<future reserve>

15

User Defined 1

16

User Defined 2

17

User Defined n

n

Technical Report

Figure 4: Unit/Machine Control Modes

5.1 Unit / Machine Control Modes

A Unit / Machine Control Mode is an ordered subset of states, state commands, and state transitions that determines the strategy for carrying out a unit/machine’s process.

Typical Unit Control Modes are Automatic, Semi-Auto, Manual, Index, Jog, Clean, Dry Cycle, etc. The distinguishing elements between these Unit Control Modes are the selected subset of states, state commands, and state transitions.

The ordered procedures within the states will be unique for the Unit Control Mode that the state resides in. For example, in a “Production” Unit Control Mode the definition of “executing” in a filling machine will mean it is “producing” product. In the “Manual” Unit Control Mode the definition of the “executing” state may be dry cycling, or jogging / indexing. The “Executing” State defines the functional operation of the Unit Control Mode. States of identical names may have different functions in different Unit Control Modes

Examples of Unit Control Modes are:

Producing Mode

This represents the mode which is utilized for routine production. The machine executes relevant logic in response to commands which are either entered directly by the operator or issued by another supervisory system.

Maintenance Mode

This mode may allow suitably authorized personnel the ability to run an individual machine independent of other machines in a production line. This mode would typically be used for faultfinding, machine trials or testing operational improvements. This mode would also allow the speed of the machine to be adjusted (where this feature is available).

Manual Mode

This provides direct control of individual machine modules. This feature is available depending upon the mechanical constraints of the mechanisms being exercised. This feature may be used for the commissioning of individual drives, verifying the operation of synchronized drives, testing the drive as a result of modifying parameters etc.

5.2 Unit / Machine Control Mode Management

Automated machinery has Unit Control Modes other than “Production”, as noted earlier. Each unit control mode has its own state model. In order to manage the change from one mode to the next, a mode management procedure must be defined. The mode management procedure determines how, and in what state a machine may change Unit Control Modes; i.e. the mode management procedure includes interlocks that prevent the machine changing Unit Control Modes when in inappropriate states.

Unit control mode management enables the machine designer to manage unit control mode transitions. Specification on transitions between unit control modes is left to the user, but typical transition points are at wait states. The specification of the unit control mode manager is such that no state or control functions are carried out in this upper level routine. The intent of the mode manager is to logically supervise when a change in mode can be done, command a mode change, and report status of the change request. All considerations of a mode manager must be consistent with prevailing safe practices and standards.

Transitions between Unit Control Modes can occur:

· As a result of a local or remote operator command.

· As a result of a remote request from another automated unit.

· As a result of a State change. This is generated by change of state of one or a number of machine conditions, either directly from I/O or completion of a logic routine. For example, if a filling machine has “COMPLETE” its production run in
“AUTO” mode of a given number of cases it may change to the “CLEANING” mode to begin a clean cycle.

At only pre-programmed states.

[image: image8]
Figure 5: Multi-Mode Example Diagram (Producing Mode States)

6 Common Unit / Machine Mode Examples

6.1 Producing Mode

The Base State model above can be used to define a “Production” mode that is used in order to deliver control of routine processing and production. It is recognized that machines also require maintenance, calibration and setting up. To address this requirement two example modes of operation are shown below: Maintenance and Manual. Because there can be any number of possible modes for an Automated Machine a User Mode example is also shown. The User Mode example is based on the Weihenstephan PDA (Production Data Acquisition) standard.

6.2 Maintenance Mode

This mode allows suitably authorized personnel the ability to run an individual machine independent of other machines in a production line. This would typically be used for faultfinding, machine trials or testing operational improvements. It is expected that, because the machine will perform its usual operations, it will need to undergo some or all of its routine starting up procedures. Maintenance mode operations will follow a recognized state model.

By way of example, one possible Maintenance Mode state model is shown in Figure 6 below. It is recognized that individual machine manufacturers may have good reason to develop other versions of maintenance mode state models. Typically modes, such as Maintenance Mode are developed as containing a subset of the states in the Production Mode. The state names remain consistent but the function of the state has been modified to be consistent with the mode function.

[image: image9.png]GNHOLOING - un-soia —

le—sc—1

[E—

—

_f

T
!
T T
Resot stop §
|) r

Figure 6: Maintenance Operations State Model

As can be seen above, the state model proposed for maintenance operations is a subset of the previously defined Base State model. The essential difference between the Base State Model and Maintenance mode model is the absence of a SUSPENDED state in Maintenance. It is envisaged for certain line types that the SUSPENDED state is not required, as its function is to provide for a wait state for incoming material. In this example Maintenance mode is not designed for routine production and hence no SUSPENDED state is available. The function of EXECUTE state has also taken on new meaning, in that EXECUTING production may not require the same logic as EXECUTING in maintenance.

In the figure below, the Maintenance mode execution model is shown. Only state functions represented in the state model for the Maintenance mode will be executed. The functions for the Maintenance mode are not necessarily the same functions as those in other modes, even though they are named the same – they are referenced for the mode they are associated with. Programmatically, the functions for each mode are executed only when the respective mode has been chosen by the “Mode Management” routine.

[image: image10]
Figure 7: Maintenance Mode Execution Model

6.3 Manual Mode

This mode of operation provides suitably authorized personnel the ability to operate individual devices (such as drives) within the machine under manual pushbutton control. All operations in the mode may be on a "hold-to-run" basis such that removal of the run signal will cause the drive to be stopped. The ability to perform specific functions will be dependent upon mechanical constraints and interlocks. This mode of operation will be of particular use for setting up the machine to work.

[image: image11.png]T

]
i

siop T

| 3 3
stomred | {e—sc—— STammiis e Aponten: Le—sc— 1 Kaanng

Figure 8: Manual Operations State Model

The predefined state model associated with this mode can again be defined as a subset from the Base State Model. Common synonyms for this mode of operation are Inch, Jog, or Index. Figure 8 illustrates a manual mode in which the execute state of the encapsulated devices (drives) is shown within the Execute state.
In figure 9, the Manual mode execution model is shown. Only state functions represented in the state model for the Manual mode will be executed. The functions for the Manual mode are not necessarily the same functions as those in other modes, even though they are named the same – they are referenced for the mode they are associated with. Programmatically, the functions for each mode are executed only when the respective mode has been chosen by the “Mode Management” routine.

[image: image12]
Figure 9: Manual Mode Execution Model
6.4 User Mode

Any mode of operation can be defined which provides a required function for the machine. The mode provides suitably authorized personnel the ability to operate the machine under pushbutton control, or a remote system to operate the machine an integrated system. This report recommends the approach in which all modes are based on a fixed number of general machine states. The “name” of the state(s) may be customized to provide the operator with an intuitive or descriptive name for the state, but the function of the state(s) is consistent with general definition of the base state model. The predefined state model associated with this mode can again be defined as a subset from earlier modes.

Below is a depiction of the Weihenstephan standard harmonized to the Base State model in this report. In this User Mode example the EXECUTE state is renamed the OPERATING state to be consistent with the terminology used in the Weihenstephan model. As can be seen the Base State model included states that were collapsed to be consistent with the Weihenstephan standard. Functions such as “Prepared”, “Lack”, and “Tailback” are conditions that provide for the machine to go into the SUSPENDING state. The state commands to perform a suspending state function are not defined as causing individual or undefined states; they are state commands, implementation logic that describes the transition to the SUSPENDING state. This is identical to the conditions that transition to the STOP state. There may be multiple conditions that cause a state transition but they do not cause “unique” machine states, they cause implementation specifics within the given framework of given states.
[image: image13.png]HELD i fa-sc — ol oG

[E— N%

NS sc. »| oreramin
sun h“;’ \;suwenﬂﬁ
sUsPEnoIG SUSPENDED : [4sC —/SUSPENDING
& Prepared, Lack, Tatback, tc.
L un-suspena—
T
& ot
3y y
storpep i fa—sc SToronc. Asoren : e—sc— NortinG

Figure 10: Automatic Weihenstephan Operations State Model

Note: OPERATING state is equivalent to an EXECUTE state.

7 Automated Machine Functional Tag Description

7.1 Introduction to PackTags

PackTags provide a uniform set of naming conventions for data elements used within the procedural elements of the base state model. As seen earlier in the document the Base State Model provides a uniform set of machine states, so that all automated machinery can be looked at in a common way. PackTags are named data elements used for open architecture, interoperable data exchange in automated machinery. This document includes the fundamental names of the data elements as well as the data type, values, ranges and where necessary, data structures. PackTags are useful for machine-to-machine (intermachine) communications; for example between a Filler and a Capper. PackTags can be used for data exchange between machines and higher-level information systems like Manufacturing Operations Management and Enterprise Information Systems.

This report defines all the PackTags necessary to navigate through a state model, as well as those that are required to define the unit control and procedural mode. This report also defines a list of PackTags that will provide necessary information that might be available from a machine. The use of all PackTags is needed to be consistent with the principles for integrated connectivity with systems using this same implementation method.

7.2 Tag Types
PackTags are broken out into three groups; Command, Status and Administration. Command and Status tags contain data required for interfacing between machines and line control for coordination, or for recipe / parameter download. Generally, Command Tags are consumed by the Automated Machine functional procedure, while Status Tags are produced by the Automated Machine functional procedure. Command tags are "written" to the machine program, as the “Information Receiver”, while status tags are read from the machine program. Administration Tags contain data collected by higher level systems for machine performance analysis, or operator information.
 Generally informational data is passed using OPC on a standard Ethernet-based communications network.

· Command Tags are prefixed by “Command”.

· Status Tags are prefixed by “Status”.

· Administration Tags are prefixed by “Admin”.

 [image: image14.png]Tnformation
Receiver / Unit
Machine

Information
Sender
CHANGE
RESPOND _ Sfatus.

Local processing

Figure 11: Tag Information Flow

7.3 PackTags Name Strings
Many factory information systems do not allow for spaces in tag names, the document uses the common practice of substituting underline characters for spaces between words in place of the dot notation, if desired for legacy systems. The first letter of each word is capitalized for readability.

While IEC 61131 is not case sensitive, to ensure inter-operability with all systems it is recommended that the mixed case format be adhered to.

Thus, the exact text strings that should be used as tag names should be as follows:

Status_StateCurrent

Status.StateCurrent

Underscore should not exist in any structured tagnames. Underscore characters exist only in legacy programs or controllers that can not use structured text. Underscores take the place of the “dot” notation in structured text.

7.4 Date Types, Units, and Ranges
The following are the typical data types used for the tags.

· Integer – 32 bit, signed decimal format

· Real – 32-bit IEEE 754 standard floating point format (maximum value of 16,777,215 without introducing error in the integer portion of the number)

· Binary – Bit pattern

· String – null-terminated ASCII, 80 characters default

· Time – ISO 8601:1988 24hr Time data type, beginning at 00:00:00.

· Date – ISO 8601:1988 Date data type YYYY-MM-DD
7.4.1 Structured Data Types

· PACKMLV30 – is a placeholder for the machine unit name, and is the top level in the PackTag structure.

· PMLc – is the collection of all command tags in the PackTag structure.

· PMLs – is the collection of all status tags in the PackTag structure.

· PMLa – is the collection of all administration tags in the PackTag structure.

· Interface – is a collection of tags that are used to describe communication command values between machines using the PackTag structure.

· Descriptor – is a collection of tags that are use to describe parameters in the machine unit.
· Product – is a collection of tags used to describe the product that the machine is making.

· Ingredient – is a collection of tags used to describe the raw materials that are needed for the product.

· Alarm – is the collection tags needed to describe alarm events.

· TimeStamp – is the collection of the Time and Date tags.
7.5 Tag Details

The following section is a summary listing of the tags. Tag definitions are detailed below:

Table 4: Command Tags
	
	
	
	
	
	
	
	Datatype

	UnitName
	
	
	
	
	
	UnitName
	PACKMLv30

	
	Command
	
	
	
	
	UnitName.Command
	PMLc

	
	
	UnitMode
	
	
	
	UnitName.Command.UnitMode
	Int (32bit)

	
	
	UnitModeChangeRequest
	
	
	
	UnitName.Command.UnitModeChangeRequest
	Bool

	
	
	MachSpeed
	
	
	
	UnitName.Command.MachSpeed
	Real

	
	
	MaterialInterlocks
	
	
	
	UnitName.Command.MaterialInterlocks
	Bool Struct

	
	
	CntrlCmd
	
	
	
	UnitName.Command.CntrlCmd
	Int (32bit)

	
	
	CmdChangeRequest
	
	
	
	UnitName.Command.CmdChangeRequest
	Bool

	
	
	RemoteInterface[#]
	
	
	
	UnitName.Command.RemoteInterface[#]
	Interface

	
	
	
	Number
	
	
	UnitName.Command.RemoteInterface[#].Number
	Int (32bit)

	
	
	
	ControlCmdNumber
	
	
	UnitName.Command.RemoteInterface[#].ControlCmdNumber
	Int (32bit)

	
	
	
	CmdValue
	
	
	UnitName.Command.RemoteInterface[#].CmdValue
	Int (32bit)

	
	
	
	Parameter[#]
	
	
	UnitName.Command.RemoteInterface[#].Parameter[#]
	Descriptor

	
	
	
	
	ID
	
	UnitName.Command.RemoteInterface[#].Parameter[#].ID
	Int (32bit)

	
	
	
	
	Name
	
	UnitName.Command.RemoteInterface[#].Parameter[#].Name
	String

	
	
	
	
	Unit
	
	UnitName.Command.RemoteInterface[#].Parameter[#].Unit
	String

	
	
	
	
	Value
	
	UnitName.Command.RemoteInterface[#].Parameter[#].Value
	Real

	
	
	Parameter[#]
	
	
	
	UnitName.Command.Parameter[#]
	Descriptor

	
	
	
	ID
	
	
	UnitName.Command.Parameter[#].ID
	Int (32bit)

	
	
	
	Name
	
	
	UnitName.Command.Parameter[#].Name
	String

	
	
	
	Unit
	
	
	UnitName.Command.Parameter[#].Unit
	String

	
	
	
	Value
	
	
	UnitName.Command.Parameter[#].Value
	Real

	
	
	Product[#]
	
	
	
	UnitName.Command.Product[#]
	Product

	
	
	
	ProductID
	
	
	UnitName.Command.Product[#].ProductID
	Int (32bit)

	
	
	
	ProcessVariables[#]
	
	
	UnitName.Command.Product[#].ProcessVariables[#]
	Descriptor

	
	
	
	
	ID
	
	UnitName.Command.Product[#].ProcessVariables[#].ID
	Int (32bit)

	
	
	
	
	Name
	
	UnitName.Command.Product[#].ProcessVariables[#].Name
	String

	
	
	
	
	Unit
	
	UnitName.Command.Product[#].ProcessVariables[#].Unit
	String

	
	
	
	
	Value
	
	UnitName.Command.Product[#].ProcessVariables[#].Value
	Real

	
	
	
	Ingredients[#]
	
	
	UnitName.Command.Product[#].Ingredients[#]
	Ingredient

	
	
	
	
	IngredientID
	
	UnitName.Command.Product[#].Ingredients[#].IngredientID
	Int (32bit)

	
	
	
	
	Parameter[#]
	
	UnitName.Command.Product[#].Ingredients[#].Parameter[#]
	Descriptor

	
	
	
	
	
	ID
	UnitName.Command.Product[#].Ingredients[#].Parameter[#].ID
	Int (32bit)

	
	
	
	
	
	Name
	UnitName.Command.Product[#].Ingredients[#].Parameter[#].Name
	String

	
	
	
	
	
	Unit
	UnitName.Command.Product[#].Ingredients[#].Parameter[#].Unit
	String

	
	
	
	
	
	Value
	UnitName.Command.Product[#].Ingredients[#].Parameter[#].Value
	Real

Table 5 : Status Tags
	
	Status
	
	
	
	
	UnitName.Status
	PMLs

	
	
	UnitModeCurrent
	
	
	
	UnitName.Status.UnitModeCurrent
	Int (32bit)

	
	
	UnitModeRequested
	
	
	
	UnitName.Status.UnitModeRequested
	Bool

	
	
	UnitModeChangeInProcess
	
	
	
	UnitName.Status.UnitModeChangeInProcess
	Bool

	
	
	StateCurrent
	
	
	
	UnitName.Status.StateCurrent
	Int (32bit)

	
	
	StateRequested
	
	
	
	UnitName.Status.StateRequested
	Int (32bit)

	
	
	StateChangeInProcess
	
	
	
	UnitName.Status.StateChangeInProcess
	Bool

	
	
	MachSpeed
	
	
	
	UnitName.Status.MachSpeed
	Real

	
	
	CurMachSpeed
	
	
	
	UnitName.Status.CurMachSpeed
	Real

	
	
	MaterialInterlock
	
	
	
	UnitName.Status.MaterialInterlock
	Bool Struct

	
	
	RemoteInterface[#]
	
	
	
	UnitName.Status.RemoteInterface[#]
	Interface

	
	
	
	Number
	
	
	UnitName.Status.RemoteInterface[#].Number
	Int (32bit)

	
	
	
	ControlCmdNumber
	
	
	UnitName.Status.RemoteInterface[#].ControlCmdNumber
	Int (32bit)

	
	
	
	CmdValue
	
	
	UnitName.Status.RemoteInterface[#].CmdValue
	Int (32bit)

	
	
	
	Parameter[#]
	
	
	UnitName.Status.RemoteInterface[#].Parameter[#]
	Descriptor

	
	
	
	
	ID
	
	UnitName.Status.RemoteInterface[#].Parameter[#].ID
	Int (32bit)

	
	
	
	
	Name
	
	UnitName.Status.RemoteInterface[#].Parameter[#].Name.
	String

	
	
	
	
	Unit
	
	UnitName.Status.RemoteInterface[#].Parameter[#].Unit
	String

	
	
	
	
	Value
	
	UnitName.Status.RemoteInterface[#].Parameter[#].Value
	Real

	
	
	Parameter[#]
	
	
	
	UnitName.Status.Parameter[#]
	Descriptor

	
	
	
	ID
	
	
	UnitName.Status.Parameter[#].ID
	Int (32bit)

	
	
	
	Name
	
	
	UnitName.Status.Parameter[#].Name
	String

	
	
	
	Unit
	
	
	UnitName.Status.Parameter[#].Unit
	String

	
	
	
	Value
	
	
	UnitName.Status.Parameter[#].Value
	Real

	
	
	Product[#]
	
	
	
	UnitName.Status.Product[#]
	Product

	
	
	
	ProductID
	
	
	UnitName.Status.Product[#].ProductID
	Int (32bit)

	
	
	
	ProcessVariables[#]
	
	
	UnitName.Status.Product[#].ProcessVariables[#]
	Descriptor

	
	
	
	
	ID
	
	UnitName.Status.Product[#].ProcessVariables[#].ID
	Int (32bit)

	
	
	
	
	Name
	
	UnitName.Status.Product[#].ProcessVariables[#].Name
	String

	
	
	
	
	Unit
	
	UnitName.Status.Product[#].ProcessVariables[#].Unit
	String

	
	
	
	
	Value
	
	UnitName.Status.Product[#].ProcessVariables[#].Value
	Real

	
	
	
	Ingredients[#]
	
	
	UnitName.Status.Product[#].Ingredients[#]
	Ingredient

	
	
	
	
	IngredientID
	
	UnitName.Status.Product[#].Ingredients[#].IngredientID
	Int (32bit)

	
	
	
	
	Parameter[#]
	
	UnitName.Status.Product[#].Ingredients[#].Parameter[#]
	Descriptor

	
	
	
	
	
	ID
	UnitName.Status.Product[#].Ingredients[#].Parameter[#].ID
	Int (32bit)

	
	
	
	
	
	Name
	UnitName.Status.Product[#].Ingredients[#].Parameter[#].Name
	String

	
	
	
	
	
	Unit
	UnitName.Status.Product[#].Ingredients[#].Parameter[#].Unit
	String

	
	
	
	
	
	Value
	UnitName.Status.Product[#].Ingredients[#].Parameter[#].Value
	Real

Table 6 : Administration Tags
	
	Admin
	
	
	
	
	UnitName.Admin
	PMLa

	
	
	Parameter[#]
	
	
	
	UnitName.Admin.Parameter[#]
	Descriptor

	
	
	
	ID
	
	
	UnitName.Admin.Parameter[#].ID
	Int (32bit)

	
	
	
	Name
	
	
	UnitName.Admin.Parameter[#].Name
	String

	
	
	
	Unit
	
	
	UnitName.Admin.Parameter[#].Unit
	String

	
	
	
	Value
	
	
	UnitName.Admin.Parameter[#].Value
	Real

	
	
	Alarm[#]
	
	
	
	UnitName.Admin.Alarm[#]
	Alarm

	
	
	
	ID
	
	
	UnitName.Admin.Alarm[#].ID
	Int (32bit)

	
	
	
	Value
	
	
	UnitName.Admin.Alarm[#].Value
	Int (32bit)

	
	
	
	Message
	
	
	UnitName.Admin.Alarm[#].Message
	String

	
	
	
	TimeEvent
	
	
	UnitName.Admin.Alarm[#].TimeEvent
	TimeStamp

	
	
	
	
	AlmDate
	
	UnitName.Admin.Alarm[#].TimeEvent.AlmDate
	Date

	
	
	
	
	AlmTime
	
	UnitName.Admin.Alarm[#].TimeEvent.AlmTime
	Time

	
	
	
	TimeAck
	
	
	UnitName.Admin.Alarm[#].TimeAck
	TimeStamp

	
	
	
	
	AlmDate
	
	UnitName.Admin.Alarm[#].TimeAck.AlmDate
	Date

	
	
	
	
	AlmTime
	
	UnitName.Admin.Alarm[#].TimeAck.AlmTime
	Time

	
	
	AlarmExtent
	
	
	
	UnitName.Admin.AlarmExtent
	Int(32bit)

	
	
	ModeCurrentTime[#]
	
	
	
	UnitName.Admin.ModeCurrentTime[#]
	Int (32bit)

	
	
	ModeCumulativeTime[#]
	
	
	
	UnitName.Admin.ModeCumulativeTime[#]
	Int (32bit)

	
	
	StateCurrentTime[#,#] (Mode,State)
	
	
	
	UnitName.Admin.StateCurrentTime[#,#] (Mode,State)
	Int (32bit)

	
	
	StateCumulativeTime[#,#] (Mode,State)
	
	
	
	UnitName.Admin.StateCumulativeTime[#,#] (Mode,State)
	Int (32bit)

	
	
	ProdConsumedCount[#]
	
	
	
	UnitName.Admin.ProdConsumedCount[#]
	CntDescrip

	
	
	
	ID
	
	
	UnitName.Admin.ProdConsumedCount[#].ID
	Int(32bit)

	
	
	
	Name
	
	
	UnitName.Admin.ProdConsumedCount[#].Name
	String

	
	
	
	Unit
	
	
	UnitName.Admin.ProdConsumedCount[#].Unit
	String

	
	
	
	Count
	
	
	UnitName.Admin.ProdConsumedCount[#].Count
	Int(32bit)

	
	
	
	AccCount
	
	
	UnitName.Admin.ProdConsumedCount[#].AccCount
	Int(32bit)

	
	
	ProdProcessedCount[#]
	
	
	
	UnitName.Admin.ProdProcessedCount[#]
	CntDescrip

	
	
	
	ID
	
	
	UnitName.Admin.ProdProcessedCount[#].ID
	Int(32bit)

	
	
	
	Name
	
	
	UnitName.Admin.ProdProcessedCount[#].Name
	String

	
	
	
	Unit
	
	
	UnitName.Admin.ProdProcessedCount[#].Unit
	String

	
	
	
	Count
	
	
	UnitName.Admin.ProdProcessedCount[#].Count
	Int(32bit)

	
	
	
	AccCount
	
	
	UnitName.Admin.ProdProcessedCount[#].AccCount
	Int(32bit)

	
	
	ProdDefectiveCount[#]
	
	
	
	UnitName.Admin.ProdDefectiveCount[#]
	CntDescrip

	
	
	
	ID
	
	
	UnitName.Admin.ProdDefectiveCount[#].ID
	Int(32bit)

	
	
	
	Name
	
	
	UnitName.Admin.ProdDefectiveCount[#].Name
	String

	
	
	
	Unit
	
	
	UnitName.Admin.ProdDefectiveCount[#].Unit
	String

	
	
	
	Count
	
	
	UnitName.Admin.ProdDefectiveCount[#].Count
	Int(32bit)

	
	
	
	AccCount
	
	
	UnitName.Admin.ProdDefectiveCount[#].AccCount
	Int(32bit)

	
	
	AccTimeSinceReset
	AccTimeSinceReset
	
	
	UnitName.Admin.AccTimeSinceReset
	Int(32bit)

	
	
	MachDesignSpeed
	
	
	
	UnitName.Admin.MachDesignSpeed
	Real

	
	
	AlarmHistory[#]
	
	
	
	UnitName.Admin.AlarmHistory[#]
	Alarm

	
	
	
	ID
	
	
	UnitName.Admin.AlarmHistory[#].ID
	Int (32bit)

	
	
	
	Value
	
	
	UnitName.Admin.AlarmHistory[#].Value
	Int (32bit)

	
	
	
	Message
	
	
	UnitName.Admin.AlarmHistory[#].Message
	String

	
	
	
	TimeEvent
	
	
	UnitName.Admin.AlarmHistory[#].TimeEvent
	TimeStamp

	
	
	
	
	AlmDate
	
	UnitName.Admin.AlarmHistory[#].TimeEvent.AlmDate
	Date

	
	
	
	
	AlmTime
	
	UnitName.Admin.AlarmHistory[#].TimeEvent.AlmTime
	Time

	
	
	
	TimeAck
	
	
	UnitName.Admin.AlarmHistory[#].TimeAck
	TimeStamp

	
	
	
	
	AlmDate
	
	UnitName.Admin.AlarmHistory[#].TimeAck.AlmDate
	Date

	
	
	
	
	AlmTime
	
	UnitName.Admin.AlarmHistory[#].TimeAck.AlmTime
	Time

	
	
	AlarmHistoryExtent
	
	
	
	UnitName.Admin.AlarmHistoryExtent
	Int(32bit)

	
	
	PACDateTime
	
	
	
	UnitName.Admin.PACDateTime
	TimeStamp

	
	
	
	
	
	
	UnitName.Admin.PACDateTime.Date
	Date

	
	
	
	
	
	
	UnitName.Admin.PACDateTime.Time
	Time

7.5.1 Command Tags

Command tags are used to control the operation of the unit machine. Command tags include state commands which control the state transitions in the base state model. The command tags also include parameters and process variables which control how the machine operates. Command tags generally originate from the machine user or a remote system. The originator of the command in this report is defined as the “requestor” or “information sender”. The unit machine in this report is known as the “execution system”.
7.5.1.1 Command.UnitMode

Data Type : INT (32bit)

Tag Descriptor: Unit Mode Target

This value is predefined by the user / OEM, and are the desired unit modes of the machine. The UnitMode tag is a numerical representation of the commanded mode. There can be any number of unit modes, and for each unit mode there is an accompanying state model. Example unit modes are Production, Maintenance, Manual, Clean Out, Dry Run, Setup, etc.
	0
	Undefined

	1
	Producing

	2
	Maintenance

	3
	Manual

	4
	<future reserve>

	5
	<future reserve>

	6
	<future reserve>

	7
	<future reserve>

	8
	<future reserve>

	9
	<future reserve>

	10
	<future reserve>

	11
	<future reserve>

	12
	<future reserve>

	13
	<future reserve>

	14
	<future reserve>

	15
	<future reserve>

	16
	User Defined 1

	17
	User Defined 2

	N
	User Defined n

7.5.1.2 Command.UnitModeChangeRequest

Data Type Bool

Tag Descriptor: Request Unit Mode Change

When a unit mode request takes place a numerical value must be present in the Command.UnitMode tag to change the unit mode. Local processing and conditioning of the requested mode change is necessary in order to accept, reject, or condition the timing of the change request.
[image: image15.png]oput Hode
Targ

'SEND — Unitiame.Command.Unithlode

Local processin
Requestode ooy

Chang

'SEND — Unitiame.Command.UnithlodeChangeRequest

ode request verfied
ACKNOWLEDGE - Unithame Status.UnitCodeChangeRequest | 52!

Wode Change:
ACKNOWLEDGE — UnitName.Status UnithlodeChangelnProcess | Processing

ACKNOWLEDGE — UnitName Status Unithlode

Figure 12: Unit Mode Change Example Sequence
7.5.1.3 Command.MachSpeed

Data Type: REAL

Unit of Measure: Primary packages/minute

Tag Descriptor: Current Machine Speed

This defines the set point for the current speed of the machine in primary packages per minute. Keeping speed in a primary package unit of measure (UOM) allows for easier control integration. The primary package UOM is the normalized rate for the machine, normalized to a value chosen on the line. The following example is for a bottle line running at balance line speed of 1000 packages/minute. The UOM chosen is equivalent to be the actual count of the Filler, or Labeler.
	Machine
	Actual Pack Counts
	Primary packages (UOM)

	Bulk Depalletizer
	41.6666 (24 pack equiv)
	1,000

	Filler
	1,000
	1,000

	Labeler
	1,000
	1,000

	Packer
	66.666 (15 packs)
	1,000

7.5.1.4 Command.MaterialInterlocks

Data Type: Structure of 32 bits in length
Tag Descriptor: Materials Ready

Indicates materials are ready for processing. It is comprised of a series of bits with 1 equaling ready or not low, 0 equaling not ready, or low. Each bit represents a different user material. Materials are defined as all consumables such as product, cartons, labels, utilities, and glue. The word contains bits that indicate when a critical material or process parameter is ready for use, It can also be used for production, and / or indication of low condition. This information may be sent to the unit machine at any time as the interlock information changes.
	materialInterlocks

Example
	 Raw Material #1 – Not Low
	Raw Material #1 - Ready
	Air Pressure - Ready
	Compressed Air - Ready
	Lubrication Water - Ready
	Container Caps – Not Low
	Container Caps – Ready
	Undefined / Unused
	Undefined / Unused
	Undefined / Unused

	MaterialInterlocks.bit#
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	Bit #
	0
	1
	2
	3
	4
	5
	6
	..
	30
	31

7.5.1.5 Command.CntrlCmd

Data Type: INT (32bit)

Tag Descriptor: Control Command

The tag holds the value of the command that provides the state command to drive a state change in the Base State Model, this tag is typically manipulated locally. Local processing of this tag can be combined with remote or local machine conditions to drive the state model from Wait state to a Transient state. This tag can be set by a local or remote source. All values in the table below are reserved.
	0
	Undefined

	1
	Reset

	2
	Start

	3
	Stop

	4
	Hold

	5
	Unhold

	6
	Suspend

	7
	Unsuspend

	8
	Abort

	9
	Clear

7.5.1.6 Command.CmdChangeRequest

Data Type : Bool

Tag Descriptor : State Change Request

This CmdChangeRequest bit will command the machine to proceed to change the state to the target state. The tag can be used to condition when a change of state can occur. The target state will be one of the states in the base state model.

7.5.1.7 Command.RemoteInterface[#]

Data Type: Structured Array of DataType Interface
Tag Descriptor: Upstream or Downstream Machine

This structured array is use for coordinating upstream or downstream machines in a cell of multiple unit machines. The array is chosen to be of a length that is equal to the number of machines that will be sending commands. This could be expanded if a machine is capable of receiving material from multiple upstream and / or downstream machines, thereby receiving multiple commands and parameters. This can be used for machine to machine coordination without supervisory control, or for tightly controlled units under supervisory control. These tags are typically used for consumption within the unit machine procedure. Specifically, if a remote controller was issuing commands the commands would be read by this tag and used in the unit machine.

7.5.1.7.1 Command.RemoteInterface[#].Number

Data Type : INT (32bit)

Tag Descriptor: Identification number of upstream or downstream unit machine

This is the unique number for the downstream / upstream unit machine using a common tag structure as the unit machine. The number should correspond to a number on the communication network, such network ID, or IP address identifier. This number corresponds to the “Information Sender” that is setting the command data in the RemoteInterface[#] structure of the unit machine.
7.5.1.7.2 Command.RemoteInterface[#].ControlCmdNumber

Data Type : INT (32bit)

Tag Descriptor : Control command for upstream or downstream machine
A user defined command number associated with coded value from a remote unit. This number is a coded value sent from one node on the network to another. The value can be associated with a unit mode change request, speed change request, a state change request, etc.
7.5.1.7.3 Command.RemoteInterface[#].CmdValue

Data Type : INT (32bit)

Tag Descriptor: Control command value associated ControlCmdNumber
This is the command value associated with the ControlCmdNumber above. The command value may be the speed requested, state change, etc.
Example:

For an upstream machine designated as #2 a control command number of 5 may be related to the speed setting value for the machine. A value of 400 can be used to modify the remote machine setpoint.

Command.RemoteInterface[1].Number = 2
Command.RemoteInterface[1].ControlCmdNumber = 5

Command.RemoteInterface[1].CmdValue = 400

For a downstream machine designated as #4 the control command number of 0 can be used to remotely command a state transition for the machine. The value of 2 is the command value for start.
Command.RemoteInterface[1].Number = 4

Command.RemoteInterface[1].ControlCmdNumber = 0

Command.RemoteInterface[1].CmdValue = 2

7.5.1.7.4 Command.RemoteInterface[#].Parameter[#]

Data Type : Structured Array of data type Descriptor
The Parameter tags associated to Commanded Remote Interface are typically used for command parameters that are given to the unit machine from remote machines. The parameters are typically needed for coordinating the unit machine or production with other machines. The parameter value may be anything from machine limit parameters to temperatures and counter presets. The parameters are typically limited to machine parameters as product and process parameters are describe in later tags.
7.5.1.7.4.1 Command. RemoteInterface[#].Parameter[#].ID

Data Type : INT (32bit)

Tag Descriptor: ID value of Parameter

This is the arbitrary (user defined) ID value assigned to the parameter. This is non-descript value that can be used for user tag requirements.
7.5.1.7.4.2 Command.RemoteInterface[#].Parameter[#].Name

Data Type : String

Tag Descriptor: String value assigned to Parameter

The literal parameter name is used to describe the parameter variable number, and its associated value from the remote interface. An example parameter name may be GLUE TEMP, BEARING TEMP, OVERLOAD TIME, etc.

7.5.1.7.4.3 Command.RemoteInterface[#].Parameter[#].Unit

Data Type : String[5]

Tag Descriptor:String value of Parameter unit of measure
Unit is a string that describes the unit of measure associated with the parameter’s value, ie secs, deg, rpm, ppm, etc. This tag describes the unit of measure associated with the following tag value sent from the remote interface.
7.5.1.7.4.4 Command.RemoteInterface[#].Parameter[#].Value

Data Type : REAL

Tag Descriptor: Numeric value of Parameter

This is the numeric value of the parameter. The value is described by the Parameter[#].ID, Parameter[#].Name, and is of unit of measure is described by the Parameter[#].Unit sent by the remote interface as a command to the unit machine.
7.5.1.8 Command.Parameter[#]

Data Type : Array of data type Descriptor
The Parameter tags associated to the local Interface and are typically used for command parameters that are given to the unit locally, for example from an HMI. The parameters are typically needed for running the unit machine. The parameter value may be anything from machine limit parameters to temperatures and counter presets. The parameters are typically limited to machine parameters as product and process parameters are describe in later tags.

7.5.1.8.1 Command.Parameter[#].ID

Data Type : INT (32bit)

Tag Descriptor: ID value of Parameter
This is the arbitrary (user defined) ID value of the parameter. This is non-descript value that can be used for any user tag requirements.

7.5.1.8.2 Command.Parameter[#].Name

Data Type : STRING

Tag Descriptor: Structured array of Parameter names for the machine unit.

The literal parameter name is used to describe the parameter number, and its associated value. An example parameter name may be GLUE TEMP, BEARING TEMP, OVERLOAD TIME, etc.

7.5.1.8.3 Command.Parameter[#].Unit

Data Type : STRING[5]

Tag Descriptor: Structured array of Parameter unit of measure for the machine unit.

The parameter unit is used to describe the unit of measure of the parameter, and its associated value. An example parameter unit of measure may be DegF, secs, PPM, revs, mm, etc.

7.5.1.8.4 Command.Parameter[#].Value

Data Type : Real

Tag Descriptor: Structured array of Parameter values

This is the numeric value of the parameter. The value is described by the Parameter[#].ID, Parameter[#].Name, and is of unit of measure is described by the Parameter[#].Unit commanded by the local interface, or local processor, as a command to the unit machine. An example is the following:

Command.Parameter[1].Value = 22.5

Command.Parameter[2].Value = 12

An example of a machine unit process variable:

Command.Parameter[1].Name = BEARING_1_OVERTEMP

Command.Parameter[1].Unit = DegC

Command.Parameter[1].Value = 350.00
This defines the temperature of a Bearing Overtemp alarm of the #1 bearing is to be set at 350.0 Degrees C for all products.

7.5.1.9 Command.Product[#]

Data Type : Array of data type Product
The Product data type can be used for defining product and product processing parameter variables. The command tags can come from either a local HMI or remote systems and are used to process the product on the unit machine. The array is typically needed for machines that run multiple products.

7.5.1.9.1 Command.Product[#].ProductID

Data Type : INT (32bit)

Tag Descriptor: Structured array of Product ID#

This Product ID is used to indicate to the machine which product it is producing (ie. SKU or UPC). The array can be used for machines that run multiple products.

7.5.1.9.2 Command.Product[#].ProcessVariables[#]

Data Type : Array of data type Descriptor
The ProcessVaribles structured array can be used for specific process variables needed by the unit machine for the processing of a specific product. Process variables include set points, limits, quality parameters, etc, that are needed to produce a particular product on a unit machine. The number of tags for this array will be the maximum number of needed process variables for any particular product defined on the unit machine.
7.5.1.9.2.1 Command.Product[#].ProcessVariables[#].ID

Data Type : INT (32bit)

Tag Descriptor: ID value of Parameter

This is the arbitrary (user defined) process variable ID value assigned to the process variable.
7.5.1.9.2.2 Command.Product[#].ProcessVariables[#].Name

Data Type : STRING

Tag Descriptor: Structured array of Process Variable names for multiple Product ID#s

The process variable literal name is used to describe the process variable number, and its associated value. An example process variable name may be GLUE TEMP, MaxTimeInMachine, MixingTime, KnifeSpeed, ChillRollPhaseOffset, etc.
7.5.1.9.2.3 Command.Product[#].ProcessVariables[#].Unit

Data Type : STRING[5]

Tag Descriptor: Structured array of Process Variable unit of measure
The process variable unit of measure is a string data type used to describe the unit of measure of the process variable number, and its associated value. An example process unit of measure may be DegF, secs, PPM, revs, mm, etc. .

7.5.1.9.2.4 Command.Product[#].ProcessVariables[#].Value

Data Type : Real

Tag Descriptor: Structured array of Process Variable values
The process variable value is used to specify a process variable for the Product[#] specified by the ProcessVariable[#].ID, ProcessVariables[#].Name, and ProcessVariables[#].Unit.
Command.Product[1].ProcessVariables[1].Value = 22.5

Command.Product[1].ProcessVariables[2].Value = 12

Combined with other examples of Product[#]

Command.Product[1].ProcessVariables[1].Name = Glue1Temp

Command.Product[1].ProcessVariables[1].Unit = DegF

Command.Product[1].ProcessVariables[1].Value = 356.4

Meaning the temperature of at Glue station 1 is to be controlled at 356.4 Degrees F for product number 1.

Other Examples of Process Variable Name For Products:

Name = ProductMaxTimeInMachine

Name = ProductMinTimeInMachine

Name = ByproductID

Name = ByproductsMaxTimeInMachine

7.5.1.9.3 Command.Product[#].Ingredients[#]

Data Type : Array of data type Ingredient
This array serves to hold the information needed for the raw materials that are used by the unit machine in the processing of a particular product. The extent of this array will be the maximum number of ingredients used in the processing of any particular product.
7.5.1.9.3.1 Command.Product[#].Ingredients[#].IngredientID

Data Type : INT (32bit)

Tag Descriptor: Structured array of Ingredient IDs

The IngredientID is an arbitrary number associated with the raw material, or ingredient for a particular product number. The user will define the value associated to the ingredient IDs that are used in the operation of the machine for a particular product. Each ingredient should have a distinct ID (SKU or UPC).
7.5.1.9.3.2 Command.Product[#].Ingredients[#].Parameter[#]

Data Type : Array of data type Descriptor
This array or structures is used for parameters associated with a particular ingredient or raw material used the processing of a particular product number. This command tag is typically set by a “Information Sender” to the unit machine controller. The extent of this array is the maximum number of parameters associated with any ingredient in any product that is defined on the unit machine.
7.5.1.9.3.2.1 Command.Product[#].Ingredients[#].Parameter[#].ID

Data Type : INT (32bit)

Tag Descriptor: ID value of Parameter

This is the arbitrary (user defined) ID value assigned to one of the parameters for the ingredient or raw material, needed for the processing of the product defined by the product number.
7.5.1.9.3.2.2 Command.Product[#].Ingredients[#].Parameter[#].Name

Data Type : STRING

Tag Descriptor: Structured array of Ingredient Parameter Names

The parameter variable name in the parameter array is used to describe the parameter names associated with a specific ingredient number in a specific product number. An example parameter name may be SETUP TIME, TEMP, TAB POSITION etc. The array is typically needed for machines that run multiple ingredients with multiple parameters with multiple products.

7.5.1.9.3.2.3 Command.Product[#].Ingredients[#].Parameter[#].Unit

Data Type : STRING[5]

Tag Descriptor: Structured array of unit of measure

The parameter unit tag is used to describe the parameter names associated with a specific parameter in an specific ingredient in a specific product. An example unit of measure name may be DegF, secs, PPM, revs, mm, etc. The array is typically needed for unit machines that run multiple products with multiple ingredients with multiple processing parameters.

7.5.1.9.3.2.4 Command.Product[#].Ingredients[#].Parameter[#].Value

Data Type : Real

Tag Descriptor: Structured array of values

The ingredient parameter value is used to specify a parameter variable for the control of the process. The array is typically needed for unit machines that run multiple products with multiple ingredients with multiple processing parameters. As an example with Ingredient number 1 in Product number 1:

Command.Product[1].Ingredients[1].Parameter[1].Value = 225

Command.Product[1].Ingredients[1].Parameter[2].Value = 12

Combined with other examples of Product[#]

Command.Product[1].Ingredients[1].Parameter[1].Name = KNIFE_OFFSET

Command.Product[1].Ingredients[1].Parameter[1].Unit = degrees

Command.Product[1].Ingredients[1].Parameter[1].Value = 3.564

Meaning the offset of the knife is to be controlled at 3.564 Degrees for Parameter variable number 1, on ingredient 1 for product number 1.

7.5.2 Status Tags

Status tags are used to describe the operation of the unit machine. Status tags include state commands which describe the state transitions in the base state model. The status tags also include parameters and process variables which describe how the machine operates. Status tags generally originate from the unit machine user and can be used on the HMI or a remote system. The originator of the status tags in this report is defined as the “Execution system”.
7.5.2.1 Status.UnitModeCurrent

Data Type : INT (32bit)

Tag Descriptor : Unit Mode in current use

This value is predefined by the user / OEM of the available unit modes of the machine allowing a possible different set of states for the base State Model and could provide completely different functionality in the same machinery such as Cleanout, Producing, Etc.

	0
	Undefined

	1
	Producing

	2
	Maintenance

	3
	Manual

	4
	<future reserve>

	5
	<future reserve>

	6
	<future reserve>

	7
	<future reserve>

	8
	<future reserve>

	9
	<future reserve>

	10
	<future reserve>

	11
	<future reserve>

	12
	<future reserve>

	13
	<future reserve>

	14
	<future reserve>

	15
	<future reserve>

	16
	User Defined 1

	17
	User Defined 2

	N
	User Defined n

7.5.2.2 Status.UnitModeRequested

Data Type Bool

Tag Descriptor: Requested Unit Mode Change

When a unit mode request takes place a numerical value must be present in the Unit Mode target to change the unit mode. Local processing and conditioning of the requested mode change is necessary in order to accept, reject, or condition the timing of the change request.

7.5.2.3 Status.UnitModeChangeInProcess

Data Type Bool

Tag Descriptor: Requested Unit Mode Change In Process

When a unit mode request takes place, this tag reflects the status of the state model. If the state of the machine required time to change mode this bit would track the request and reset when the change was completed.

[image: image16.png]oput Hode
Targ

'SEND — Unitiame.Command.Unithlode

Local processin
Requestode ooy

Chang

'SEND — Unitiame.Command.UnithlodeChangeRequest

ode request verfied
ACKNOWLEDGE - Unithame Status.UnitCodeChangeRequest | 52!

Wode Change:
ACKNOWLEDGE — UnitName.Status UnithlodeChangelnProcess | Processing

ACKNOWLEDGE — UnitName Status Unithlode

Figure 7: Unit Mode Change Example Sequence

7.5.2.4 Status.StateCurrent

Data Type : INT (32bit)

Tag Descriptor: Current State Number

The StateCurrent status tag specifies the current state in the current unit mode of the unit machine. The numerical values are in the table below are reserved.

	0
	Undefined

	1
	“Clearing”

	2
	“Stopped”

	3
	“Starting”

	4
	“Idle”

	5
	“Suspended”

	6
	“Execute”

	7
	“Stopping”

	8
	“Aborting”

	9
	“Aborted”

	10
	“Holding”

	11
	“Held”

	12
	“UnHolding”

	13
	“Suspending”

	14
	“Unsuspending”

	15
	“Resetting”

	16
	“Completing”

	17
	“Complete”

7.5.2.5 Status.StateRequested

Data Type : INT (32bit)

Tag Descriptor : Target State.

This value is used for state transition checking to ensure that a target state can be transitioned to. The target state, StateRequesed, is a numerical value cooresponding to a state in the base state model (shown above).
7.5.2.6 Status.StateChangeInProcess

Data Type : Bool

Tag Descriptor : State Change in Process.

This bit indicates that a change in state is in progress following a state change request command.
[image: image17.png]nput St

[renston Gommana { senp — unithame. Command. Catricma
o S
Crange | SEND - Unithame. Command. Cmd ChangeRequest

State request verti,

. ACKNOWLEDGE - Uniiame Status.StateRequested | 58 <<%
[E—

ACKNOWLEDGE - Uniliame.Status StateChangehnProcess | Poe=58

State Request

. ACKNOWLEDGE - Unillame.Status StateCurrent _| Compiee

Figure 8: State Change Example Sequence

7.5.2.7 Status.MachSpeed

Data Type: REAL

Units: Primary packages/minute

Tag Descriptor: Current Machine Speed

This describes the set point for the current speed of the machine in primary packages per minute. Keeping speed in a primary package unit of measure (UOM) allows for easier control integration. The primary package UOM is the normalized rate for the machine, normalized to a value chosen on the line. The following example is for a bottle line running at balance line speed of 1000 packages/minute. The UOM chosen is equivalent to be the actual count of the Filler, or Labeler.

	Machine
	Actual Pack Counts
	Primary packages (UOM)

	Bulk Depalletizer
	41.6666 (24 pack equiv)
	1,000

	Filler
	1,000
	1,000

	Labeler
	1,000
	1,000

	Packer
	66.666 (15 packs)
	1,000

7.5.2.8 Status.CurMachSpeed

Data Type : Real

Tag Descriptor: Current Machine Speed in primary packages/minute
This the actual value of the machine speed. Keeping units in primary package unit of measure (UOM), allows for easier control integration. The primary package UOM is the normalized rate for the machine, normalized to a value chosen on the line. Pack Counts are parameters stored in the Administration tags or downloaded parameters stored in Command tags parameters.

7.5.2.9 Status.MaterialInterlocks

Data Type: Structure of 32 bits in length

Tag Descriptor: Materials Ready

MaterialInterlocks describes the status of the materials that are ready for processing. It is comprised of a series of bits with 1 equaling ready or not low, 0 equaling not ready, or low. Each bit represents a different user material. Materials are defined as all consumables such as product, cartons, labels, utilities, and glue. The word contains bits that indicate when a critical material or process parameter is ready for use, It can also be used for production, and / or indication of low condition. This information is set by the by the unit machine at any time as the interlock information changes.

	materialInterlocks

Example
	 Raw Material #1 – Not Low
	Raw Material #1 - Ready
	Air Pressure - Ready
	Compressed Air - Ready
	Lubrication Water - Ready
	Container Caps – Not Low
	Container Caps – Ready
	Undefined / Unused
	Undefined / Unused
	Undefined / Unused

	MaterialInterlocks.bit#
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	Bit #
	0
	1
	2
	3
	4
	5
	6
	..
	30
	31

7.5.2.10 Status.RemoteInterface[#]

Data Type: Structured Array of DataType Interface

Tag Descriptor: Upstream or Downstream Machine

This structured array is used for coordinating upstream or downstream machines in a cell of multiple unit machines. The array is chosen to be of a length that is equal to the number of machines that will be receiving commands. This could be expanded if a machine is capable of receiving material from multiple upstream and / or downstream machines, thereby sending multiple commands and parameters. This can be used for machine to machine coordination without supervisory control, or for tightly controlled units under supervisory control. These tags are typically used for consumption outside the unit machine procedure. Specifically, if the local controller was sending status information the tags would be read by remote systems.

7.5.2.10.1 Status.RemoteInterface[#].Number

Data Type : INT (32bit)

Tag Descriptor: Identification number of upstream or downstream machine

This is the unique number for the downstream / upstream unit machine using a common tag structure as the unit machine. The number should correspond to a number on the communication network, such network ID, or IP address identifier. This number corresponds to the “Information Receiver” that is receiving the status data.
7.5.2.10.2 Status.RemoteInterface[#].ControlCmdNumber

Data Type : INT (32bit)

Tag Descriptor : Control command for upstream or downstream machine

A user defined command number associated with coded value to a remote unit. This number is a coded value sent from one node on the network to another. The value can be associated with a unit mode change request, speed change request, a state change request, etc.

7.5.2.10.3 Status.RemoteInterface[#].CmdValue

Data Type : INT (32bit)

Tag Descriptor: Control command value associated ControlCmdNumber
This is the status value associated with the ControlCmdNumber above. The status value may be the speed requested, state change, etc.

Example:

For an upstream machine designated as #2 a control command number of 5 may be related to a speed setting value from machine #2. A value of 400 can be used to modify the current machine setpoint.

Status.RemoteInterface[1].Number = 2

Status.RemoteInterface[1].ControlCmdNumber = 5

Status.RemoteInterface[1].CmdValue = 400

For a downstream machine designated as #4 the control command number of 0 can be used to read the command of a state transition from machine #4. The value of 2 is the command value for start.

Status.RemoteInterface[1].Number = 4

Status.RemoteInterface[1].ControlCmdNumber = 0

Status.RemoteInterface[1].CmdValue = 2

7.5.2.10.4 Status.RemoteInterface[#].Parameter[#]

Data Type : Structured Array of data type Descriptor

The status Parameter tags associated to the Remote Interface and are typically used for parameters that are sent to the remote machine(s) from the unit machine. The parameters are typically needed for coordinating the unit with other machines. The parameter value may be anything from machine limit parameters to temperatures and counter presets. The parameters are typically limited to machine parameters as product and process parameters are describe in later tags.

7.5.2.10.4.1 Status.RemoteInterface[#].Parameter[#].ID

Data Type : INT (32bit)

Tag Descriptor: ID value of Parameter

This is the arbitrary (user defined) ID value assigned to the parameter. This is non-descript value that can be used for user tag requirements.

7.5.2.10.4.2 Status.RemoteInterface[#].Parameter[#].Name

Data Type : String

Tag Descriptor: String value assigned to Parameter

The literal parameter name is used to describe the parameter variable number, and its associated value from the unit machine. An example parameter name may be GLUE TEMP, BEARING TEMP, OVERLOAD TIME, etc. This is also could be displayed on HMI screens.

7.5.2.10.4.3 Status.RemoteInterface[#].Parameter[#].Unit

Data Type : String[5]

Tag Descriptor:String value of Parameter unit of measure

Unit is a string that describes the unit of measure associated with the parameter’s value, ie secs, deg, rpm, ppm, etc. This tag describes the unit of measure associated with the following tag value that is sent from the unit machine.

7.5.2.10.4.4 Status.RemoteInterface[#].Parameter[#].Value

Data Type : REAL

Tag Descriptor: Numeric value of Parameter

This is the numeric value of the parameter. The value is described by the Parameter[#].ID, Parameter[#].Name, and is of unit of measure that is parameterized by the Parameter[#].Unit. The value can sent by the unit machine as information to a remote machine.

7.5.2.11 Status.Parameter[#]

Data Type : Array of data type Descriptor

The Parameter tags are associated to the local Interface and are typically used for parameters that are displayed or used on the unit locally, for example an HMI. These parameters can be a reflection of the command parameter tags or used to display any machine parameter. The parameters are typically needed for running the unit machine. The parameter value may be anything from machine limit parameters to temperatures and counter presets. The parameters are typically limited to machine parameters as product and process parameters are describe in later tags. The extent of the array is dependent on the number parameters needed.
7.5.2.11.1 Status.Parameter[#].ID

Data Type : INT (32bit)

Tag Descriptor: ID value of Parameter

This is the arbitrary (user defined) ID value of the parameter. This is non-descript value that can be used for any user tag requirements.

7.5.2.11.2 Status.Parameter[#].Name

Data Type : STRING

Tag Descriptor: Structured array of Parameter Variable names for the machine unit.

The literal parameter name is used to describe the parameter number, and its associated value. An example parameter name may be GLUE TEMP, BEARING TEMP, OVERLOAD TIME, etc. This is also could be displayed on HMI screens.

7.5.2.11.3 Status.Parameter#].Unit

Data Type : STRING[5]

Tag Descriptor: Structured array of Parameter unit of measure for the machine unit.

The parameter unit is used to describe the unit of measure of the parameter, and its associated value. An example parameter unit of measure may be DegF, secs, PPM, revs, mm, etc. This is also could be displayed on HMI screens.

7.5.2.11.4 Status.Parameter[#].Value

Data Type : Real

Tag Descriptor: Structured array of Parameter values

This is the numeric value of the parameter. The value is described by the Parameter[#].ID, Parameter[#].Name, and is of unit of measure is described by the Parameter[#].Unit on the local machine. An example is the following:

Status.Parameter[1].Value = 22.5

Status.Parameter[2].Value = 12

An example of a machine unit process variable:

Status.Parameter[1].Name = BEARING_1_OVERTEMP

Status.Parameter[1].Unit = DegC

Status.Parameter[1].Value = 350.00

This defines the temperature of a Bearing Overtemp alarm of the #1 bearing is to be set at 350.0 Degrees C for all products.

7.5.2.12 Status.Product[#]

Data Type : Array of data type Product

The Product data type can be used for displaying product and product processing parameter variables. The status tags can come from either a local HMI or remote systems and are used to display or send information on the product(s) on the unit machine. The array is typically needed for machines that run multiple products.

7.5.2.12.1 Status.Product[#].ProductID

Data Type : INT (32bit)

Tag Descriptor: Structured array of Product ID#

This Product ID is used to indicate to the machine which product it is producing (ie. SKU or UPC). This can also be displayed on all HMI screens. The array can be used for machines that run multiple products.

7.5.2.12.2 Status.Product[#].ProcessVariables[#]

Data Type : Array of data type Descriptor

The ProcessVaribles structured array can be used to display specific process variables used by the unit machine for the processing of a specific product. Process variables include set points, limits, quality parameters, etc, that are displayed to produce a particular product on a unit machine. The number of tags for this array will be the maximum number of needed process variables for any particular product defined on the unit machine.

7.5.2.12.3 Status.Product[#].ProcessVariables[#].ID

Data Type : INT (32bit)

Tag Descriptor: ID value of Parameter

This is the arbitrary (user defined) process variable ID value assigned to the process variable.

7.5.2.12.4 Status.Product[#].ProcessVariables[#].Name

Data Type : STRING

Tag Descriptor: Structured array of Process Variable names for multiple Product ID#s

The process variable literal name is used to describe the process variable number, and its associated value. An example process variable name may be GLUE TEMP, MaxTimeInMachine, MixingTime, KnifeSpeed, ChillRollPhaseOffset, etc. This also could be displayed on HMI screens
7.5.2.12.5 Status.Product[#].ProcessVariables[#].Unit

Data Type : STRING[5]

Tag Descriptor: Structured array of Process Variable unit of measure for multiple Product ID#s

The process variable unit is used to describe the units of the process variable number, and its associated value. An example process unit name may be DegF, secs, PPM, revs, mm, etc. This is also could be displayed on HMI screens. The array is typically needed for machines that run multiple products

7.5.2.12.6 Status.Product[#].ProcessVariables[#].Value

Data Type : Real

Tag Descriptor: Structured array of Process Variable values

The process variable value is used to specify a process variable for the Product[#] specified by the ProcessVariable[#].ID, ProcessVariables[#].Name, and ProcessVariables[#].Unit. This also could be displayed on HMI screens.

Status.Product[1].ProcessVariables[1].Value = 22.5

Status.Product[1].ProcessVariables[2].Value = 12

Combined with other examples of Product[#]

Status.Product[1].ProcessVariables[1].Name = Glue1Temp

Status.Product[1].ProcessVariables[1].Unit = DegF

Status.Product[1].ProcessVariables[1].Value = 356.4

Meaning the temperature of at Glue station 1 is to be controlled at 356.4 Degrees F for product number 1.

Other Examples of Process Variable Name For Products:

Name = ProductMaxTimeInMachine

Name = ProductMinTimeInMachine

Name = ByproductID

Name = ByproductsMaxTimeInMachine

7.5.2.12.7 Status.Product[#].Ingredients[#]

Data Type : Array of data type Ingredient

This array serves to hold the information needed for the raw materials that are used by the unit machine in the processing of a particular product. The extent of this array will be the maximum number of ingredients used in the processing of any particular product.

7.5.2.12.7.1 Status.Product[#].Ingredients[#].IngredientID

Data Type : INT (32bit)

Tag Descriptor: Structured array of Ingredient IDs

The IngredientID is an arbitrary number associated with the raw material, or ingredient for a particular product number. The user will define the value associated to the ingredient IDs that are used in the operation of the machine for a particular product. Each ingredient should have a distinct ID (SKU or UPC).

7.5.2.12.7.2 Status.Product[#].Ingredients[#].Parameter[#]

Data Type : Array of data type Descriptor

This array of structures is used for parameters associated with a particular ingredient or raw material used the processing of a particular product number. This status tag is typically set by the unit machine controller. The extent of this array is the maximum number of parameters associated with any ingredient in any product that is defined on the unit machine.

7.5.2.12.7.2.1 Status.Product[#].Ingredients[#].Parameter[#].ID

Data Type : INT (32bit)

Tag Descriptor: ID value of Parameter

This is the arbitrary (user defined) ID value assigned to one of the parameters for the ingredient or raw material, needed for the processing of the product defined by the product number.

7.5.2.12.7.2.2 Status.Product[#].Ingredients[#].Parameter[#].Name

Data Type : STRING

Tag Descriptor: Structured array of Ingredient Parameter Names

The parameter variable name in the parameter array is used to describe the parameter names associated with a specific ingredient number in a specific product number. An example parameter name may be SETUP TIME, TEMP, TAB POSITION etc. This also could be displayed on HMI screens. The array is typically needed for machines that run multiple ingredients with multiple parameters with multiple products.

7.5.2.12.7.2.3 Status.Product[#].Ingredients[#].Parameter[#].Unit

Data Type : STRING[5]

Tag Descriptor: Structured array of unit of measure

The parameter unit tag is used to describe the parameter names associated with a specific parameter in an specific ingredient in a specific product. An example process unit of measure name may be DegF, secs, PPM, revs, mm, etc. This also could be displayed on HMI screens. The array is typically needed for unit machines that run multiple products with multiple ingredients with multiple processing parameters.

7.5.2.12.7.2.4 Status.Product[#].Ingredients[#].Parameter[#].Value

Data Type : Real

Tag Descriptor: Structured array of values

The ingredient parameter value is used to specify a parameter variable for displaying information about the process. This also could be displayed on HMI screens. The array is typically needed for unit machines that run multiple products with multiple ingredients with multiple processing parameters. As an example with Ingredient number 1 in Product number 1:

Status.Product[1].Ingredients[1].Parameter[1].Value = 225

Status.Product[1].Ingredients[1].Parameter[2].Value = 12

Combined with other examples of Product[#]

Status.Product[1].Ingredients[1].Parameter[1].Name = KNIFE_OFFSET

Status.Product[1].Ingredients[1].Parameter[1].Unit = degrees

Status.Product[1].Ingredients[1].Parameter[1].Value = 3.564

Meaning the offset of the knife is to be controlled at 3.564 Degrees for Parameter variable number 1, on ingredient 1 for product number 1.

7.5.3 Administration Tags

Administration tags are used to describe the quality and alarm information of the unit machine. Administration tags include alarm parameters which describe the conditions within the base state model typically for production data acquisition (PDA) systems. The administration tags also include parameters which can describe how the machine well the machine operates, or specifically information on the product quality produced by the machine. Administration tags generally originate from the unit machine and can be used on the HMI or a remote system.
7.5.3.1 Admin.Parameter[#]

Data Type : Array of data type Descriptor

The Parameter tags associated to the local Interface are typically used for as parameters that are displayed or used on the unit locally, for example from an HMI. These parameters can be used to display any quality, alarm, or machine downtime parameter. The parameters are typically limited to parameters related the unit. The extent of the array is the maximum number of parameters needed.
7.5.3.1.1 Admin.Parameter[#].ID

Data Type : INT (32bit)

Tag Descriptor: ID value of Parameter

This is the arbitrary (user defined) ID value of the parameter. This is non-descript value that can be used for any user tag requirements
7.5.3.1.2 Admin.Parameter[#].Name

Data Type : STRING

Tag Descriptor: Structured array of parameter names for the machine unit.

The parameter name is used to describe the parameter number, and its associated value. An example parameter name may be CASES MADE, OPERATOR SHIFT, REJECTED PRODUCTS, etc. This is also could be displayed on HMI screens. The array is typically needed for machines that have quality reporting or PDA (Production Data Acquisition) needs.

7.5.3.1.3 Admin.Parameter[#].Unit

Data Type : STRING[5]

Tag Descriptor: Structured array of Parameter Variable unit of measure for the machine unit.

The administration parameter unit of measure is used to describe the unit of measure of the parameter, and its associated value. An example parameter unit of measure may be CASES, PROD, PPM, etc. This is also could be displayed on HMI screens.

7.5.3.1.4 Admin.Parameter[#].Value

Data Type : Real

Tag Descriptor: Structured array of Parameter values

The parameter value is used to specify a unit machine variable for use in the PDA or to be sent to an “information receiver”. This is also could be displayed on HMI screens. As an example:

Admin.Parameter[1].Value = 50019

An example of a machine unit process variable:

Admin.Parameter[1].Name = TOTAL PRODUCTION

Admin.Parameter[1].Unit = STAT

Admin.Parameter[1].Value = 50010.

7.5.3.2 Admin.Alarm[#]

Data Type: Alarm

Descriptor: Array of given size for machine fault number and messaging

The Alarm tags associated to the local Interface are typically used for as parameters that are displayed or used on the unit locally, for example from an HMI. These alarm parameters can be used to display any alarm, or machine downtime cause that is currently occurring in the system. The alarms are typically limited to the machine unit. The extent of the array is the maximum number of alarms needed to be annunciated.

7.5.3.2.1 Admin.Alarm[#].ID

Data Type : INT (32bit)

Tag Descriptor: Alarm Message Identification Number

Alarm ID number. Unique value assigned to each alarm. ID can be used for any general alarms and faults, Alarms detailed in Appendix “A”.
7.5.3.2.2 Admin.Alarm[#].Value

Data Type : INT (32bit)

Tag Descriptor: Alarm Message Number

The Alarm Message number is a value that is associated to the alarm allowing for user specific detail or to break down the Alarm.ID to greater detail. Alarms detailed in Appendix “A”. For instance an Alarm[#].ID value of 4 from Appendix A may require a more detailed breakdown as shown in Appendix A.
7.5.3.2.3 Admin.Alarm[#].Message

Data Type : String

Tag Descriptor:Alarm Message

The alarm message is the actual text of the alarm for those machines capable of reading the string information.

7.5.3.2.4 Admin.Alarm[#].TimeEvent

Data Type : TimeStamp

Structure of date and time in the alarm array to detail the date and time the alarm occurred.
7.5.3.2.4.1 Admin.Alarm[#].TimeEvent.AlmDate

Data Type : Date

Tag Descriptor: ISO Date Data type

Defines the date the alarm has occurred in ISO 8601:1988 format (defines as seconds from January 1, 1970 at 12:00am).

7.5.3.2.4.2 Admin.Alarm[#].TimeEvent.AlmTime

Data Type : Time

Tag Descriptor: ISO Time Data type

Defines the time the alarm has occurred in ISO 8601:1988 format (defines as seconds from January 1, 1970 at 12:00am).

7.5.3.2.5 Admin.Alarm[#].TimeAck

Data Type : TimeStamp

Structure of date and time in the alarm array to detail the date and time the alarm was acknowledged.

7.5.3.2.5.1 Admin.Alarm[#].TimeAck.AlmDate

Data Type : Date

Tag Descriptor: ISO Date Data type

Defines the time the alarm was acknowledged in ISO 8601:1988 format (defines as seconds from January 1, 1970 at 12:00am).

7.5.3.2.5.2 Admin.Alarm[#].TimeAck.AlmTime

Data Type : Time

Tag Descriptor: ISO Time Data type

Defines the date the alarm was acknowledged in ISO 8601:1988 format (defines as seconds from January 1, 1970 at 12:00am).

The following is an example of how the Alarm structure may appear:

The alarm array is for currently occurring alarms and will can be sorted in chronological order with the most recently occurring alarmed indexed as Admin.Alarm[0].

Any unused elements in the array should be set to the following values:

Admin.Alarm[#].ID
0

Admin.Alarm[#].Value
0

Admin.Alarm[#].Message
“”

Admin.Alarm[#].TimeEvent.AlmDate
0

Admin.Alarm[#].TimeEvent.AlmTime
0

Admin.Alarm[#].TimeAck.AlmDate
0

Admin.Alarm[#].TimeAck.AlmTime
0

7.5.3.3 Admin.AlarmExtent
Data Type : INT (32bit)

Tag Descriptor: Extent of Alarm Array

The alarm extent is associated with the maximum number of alarms needed for the machine annunciation or reporting. This tag can be used by a remote machine to understand the extent of the alarm array, or locally to manage the use of the array.
7.5.3.4 Admin.AlarmHistory[#]

Data Type: Alarm

Descriptor: Array of given size for machine fault number and messaging history

The Alarm tags associated to the local Interface are typically used for parameters that are displayed or used on the unit locally, for example for a HMI. These alarm history parameters can be used to display any alarm history, or machine downtime cause. The historical alarms are typically limited to the machine unit. The extent of the array is the maximum number of historical alarms needed.

7.5.3.4.1 Admin.AlarmHistory[#].ID

Data Type : INT (32bit)

Tag Descriptor: Alarm Message Identification Number

Alarm ID number. Unique value assigned to each alarm. ID can be used for any general alarms and faults, Alarms detailed in Appendix “A”.

7.5.3.4.2 Admin.AlarmHistory[#].Value

Data Type : INT (32bit)

Tag Descriptor: Alarm Message Number

The Alarm Message number is a value that is associated to the alarm allowing for user specific detail or to break down the Alarm.ID to greater detail. Alarms detailed in Appendix “A”. For instance an Alarm[#].ID value of 4 from Appendix A may require a more detailed breakdown as shown in Appendix A.

7.5.3.4.3 Admin.AlarmHistory[#].Message

Data Type : String

Tag Descriptor: Alarm Message

The alarm message is the actual text of the alarm for those machines capable of reading the string information.

7.5.3.4.4 Admin.AlarmHistory[#].TimeEvent

Data Type : TimeStamp

Structure of date and time in the alarm array to detail the date and time the alarm occurred.

7.5.3.4.4.1 Admin.AlarmHistory[#].TimeEvent.AlmDate

Data Type : Date

Tag Descriptor: ISO Date Data type

Defines the date the alarm has occurred in ISO 8601:1988 format (defines as seconds from January 1, 1970 at 12:00am).

7.5.3.4.4.2 Admin.AlarmHistory[#].TimeEvent.AlmTime

Data Type : Date

Tag Descriptor: ISO Time Data type

Defines the Time the alarm has occurred in ISO 8601:1988 format (defines as seconds from January 1, 1970 at 12:00am).

7.5.3.4.5 Admin.AlarmHistory[#].TimeAck

Data Type : TimeStamp

Structure of date and time in the alarm array to detail the date and time the alarm was acknowledged.

7.5.3.4.5.1 Admin.AlarmHistory[#].TimeAck.AlmDate

Data Type : Date

Tag Descriptor: ISO Date Data type

Defines the date the alarm has occurred in ISO 8601:1988 format (defines as seconds from January 1, 1970 at 12:00am).

7.5.3.4.5.2 Admin.AlarmHistory[#].TimeAck.AlmTime

Data Type : Date

Tag Descriptor: ISO Time Data type

Defines the Time the alarm has occurred in ISO 8601:1988 format (defines as seconds from January 1, 1970 at 12:00am).
The following is an example of how the AlarmHistory structure may appear:

The AlarmHistory array is reserved for alarms that have occurred and can be sorted in chronological order with the most recently occurring alarmed indexed as Admin.AlarmHistory[0].

Any unused elements should be set to the following values

Admin.AlarmHistory[#].ID

0

Admin.AlarmHistory[#].Value

0

Admin.AlarmHistory[#].Message

“”

Admin.AlarmHistory[#].TimeEvent.AlmDate

0

Admin.AlarmHistory[#].TimeEvent.AlmTime

0

Admin.AlarmHistory[#].TimeAck.AlmDate

0

Admin.AlarmHistory[#].TimeAck.AlmTime

0

7.5.3.5 Admin.AlarmHistoryExtent
Data Type : INT (32bit)

Tag Descriptor: Extent of Alarm History Array

The alarm history extent is associated with the maximum number of alarms needed to be archived or tagged as alarm history for the machine. This tag can be used by a remote machine to understand the extent of the alarm array, or locally to manage the array.
7.5.3.6 Admin.ModeCurrentTime[#]

Data Type: INT (32bit)

Unit of Measure: sec

Tag Descriptor: Array of Timer Values
This tag represents the current amount of time (in sec) in any defined unit mode. The array index is equal to the designation of the of the unit machine mode values – defined in Status.UnitModeCurrent. The values roll over to 0 at 2,147,483,647.
7.5.3.7 Admin.ModeCumulativeTime[#]

Data Type: INT (32bit)

Unit of Measure: sec

Tag Descriptor: Array of Timer Values
This tag represents the cumulative amount of time (in sec) in any defined unit mode. The array index is equal to the designation of the of the unit machine mode values – defined in Status.UnitModeCurrent. The value is the cumulative elapsed time the machine has spent in each mode since it’s timers and counters were reset. The values roll over to 0 at 2,147,483,647.
7.5.3.8 Admin.StateCurrentTime[#,#]

Data Type: INT (32bit)

Unit of Measure: sec

Tag Descriptor: Array of Timer Values
This tag represents the current amount of time (in sec) in any defined state in any particular mode. The array index is equal to the designation of the of the unit machine mode values defined in Status.UnitModeCurrent, and the state values defined in Status.StateCurrent; such that the array index is [Status.UnitModeCurrent, Status.StateCurrent]. The values roll over to 0 at 2,147,483,647.

7.5.3.9 Admin.StateCumulativeTime[#,#]

Data Type: INT (32bit)

Unit of Measure: sec

Tag Descriptor: Array of Timer Values
This tag represents the cumulative amount of time (in sec) in any defined state in any particular mode since the last timer and counter reset was executed. The array index is equal to the designation of the of the unit machine mode values defined in Status.UnitModeCurrent, and the state values defined in Status.StateCurrent; such that the array index is [Status.UnitModeCurrent, Status.StateCurrent]. The values roll over to 0 at 2,147,483,647.

7.5.3.10 Admin.ProdConsumedCount[#]
Data Type: Array of data type ProdCount
This tag represents the material used / consumed in the production machine. An example of tag usage would be the number of bags consumed in a Filler, or bagger packaging machine, or the amount of linear length used, or the number caps used. This tag can be used locally or remotely if needed. The extent of the array is typically limited to the number of raw materials needed to be counted. The array is typically used for unit machines that run multiple raw materials. This array may also be used to track the number of unfinished products entering a machine for processing, but typically Admin.ProdProcessedCount[#] is used for this.
7.5.3.10.1 Admin.ProdConsumedCount[#].ID

Data Type : INT (32bit)

Tag Descriptor: ID value of ProdConsumedCount

This is the arbitrary (user defined) ID value of the consumed production material. This is non-descript value that can be used for any user tag requirements. The ID value can be SKU or a user specific material identifier.

7.5.3.10.2 Admin.ProdConsumedCount[#].Name

Data Type : STRING

Tag Descriptor: Structured array of Names in ProdConsumedCount

The name is used to literally describe the material ID, and its associated material. An example parameter name may be PRODUCT A BAGS, XYZ CAPS FOR ABC PRODUCT, etc. This also could be displayed on HMI screens. The array is typically needed for machines that have quality reporting or PDA (Production Data Acquisition) needs.

7.5.3.10.3 Admin.ProdConsumedCount[#].Unit

Data Type : STRING[5]

Tag Descriptor: Structured array of units in ProdConsumedCount

The unit tag is used to describe the names associated with a specific material used by the machine. An example process unit of measure name may be FT, CNT, KG, etc. This also could be displayed on HMI screens.

7.5.3.10.4 Admin.ProdConsumedCount[#].Count

Data Type : Int(32bit)

Tag Descriptor: Structured array of values

The count value is used as a variable for displaying information about the amount of consumed production material. The value is indexed upon the machine consuming a unit of the material defined by the ID and NAME. This could be displayed on HMI screens or higher level PDA systems. The counter rolls over to 0 at 2,147,483,648.
7.5.3.10.5 Admin.ProdConsumedCount[#].AccCount

Data Type : Int(32bit)

Tag Descriptor: Structured array of values

The accumulative count value is used as a variable for displaying information about the total amount of consumed production material. The value is indexed upon the machine consuming a unit of the material defined by the ID and NAME. This could be displayed on HMI screens or higher level PDA systems. This counter gives the user a non-resetting counter that may be used for OEE calculations. The counter rolls over to 0 at 2,147,483,648.
An example of the Production Consumption counter is the following:

Admin.ProdConsumedCount[1].ID = 546732

Admin.ProdConsumedCount[1].Name = LABELS FOR XYZ

Admin.ProdConsumedCount[1].Units = CNT

Admin.ProdConsumedCount[1].Count = 2305

Admin.ProdConsumedCount[1].AccCount = 14,995,100

The above describes consumed labels used by the machine for product XYZ as being 2305 since the last operator reset and 14,995,100 since the last accumulative counter reset.

7.5.3.11 Admin.ProdProcessedCount[#]

Data Type: Array of data type ProdCount

This tag represents the number of products processed by the production machine. An example of tag usage would be the number of products that were made, including all good and defective products. This tag can be used locally or remotely if needed. The extent of the array is typically limited to the number of products needed to be counted. The number of products processed minus the defective count is the number of products made by the machine. The array index of # = 0 can be reserved for the count of the number of units from the primary production stream.
7.5.3.11.1 Admin.ProdProcessedCount[#].ID

Data Type : INT (32bit)

Tag Descriptor: ID value of ProdProcessedCount

This is the arbitrary (user defined) ID value of the processed products. This is non-descript value that can be used for any user tag requirements. The ID value can be SKU or a user specific product identifier.

7.5.3.11.2 Admin.ProdProcessedCount[#].Name

Data Type : STRING

Tag Descriptor: Structured array of Names in ProdProcessedCount

The name is used to literally describe the product ID. An example parameter name may be PRODUCT A, ABC PRODUCT, etc. This is also could be displayed on HMI screens. The array is typically needed for machines that have quality reporting or PDA (Production Data Acquisition) needs.

7.5.3.11.3 Admin.ProdProcessedCount[#].Unit

Data Type : STRING[5]

Tag Descriptor: Structured array of units in ProdProcessedCount

The unit tag is used to describe the names associated with a specific product used by the machine. An example process unit of measure name may be FT, CNT, KG, etc. This also could be displayed on HMI screens.

7.5.3.11.4 Admin.ProdProcessedCount[#].Count

Data Type : Int(32bit)

Tag Descriptor: Structured array of values

The count value is used as a variable for displaying information about the amount of processed product. The value is indexed upon the machine processing a unit of the product defined by the ID and NAME. This could be displayed on HMI screens or higher level PDA systems. The counter rolls over to 0 at 2,147,483,648.

7.5.3.11.5 Admin.ProdProcessedCount[#].AccCount

Data Type : Int(32bit)

Tag Descriptor: Structured array of values

The accumulative count value is used as a variable for displaying information about the amount of processed product. The value is indexed upon the machine processing a unit of the product defined by the ID and NAME. This could be displayed on HMI screens or higher level PDA systems. This counter gives the user a non-resetting counter that may be used for OEE calculations. The counter rolls over to 0 at 2,147,483,648.
An example of the production processed counter is the following:

Admin.ProdProcessedCount[1].ID = 546732

Admin.ProdProcessedCount[1].Name = XYZ Product

Admin.ProdProcessedCount[1].Units = CNT

Admin.ProdProcessedCount[1].Count = 2305

Admin.ProdProcessedCount[1].AccCount = 2305

This describes the number of processed products the machine has made for product XYZ, ie 2305 products were processed by the machine.

7.5.3.12 Admin.ProdDefectiveCount[#]

Data Type: Array of data type ProdCount

This tag represents the product that is marked as defective in the production machine, to be used if applicable. An example of tag usage would the number of products rejected or products that are termed defective. This tag can be used locally or remotely if needed. The extent of the array is typically limited to the number of products needed to be counted as defective. When this tag is used with Admin.ProdProcessedCount[#] the number of good products / well formed cycles made by the machine can be calculated. The array index of # = 0 can be reserved for the total cumulative rejected units from the primary production stream.

7.5.3.12.1 Admin.ProdDefectiveCount[#].ID

Data Type : INT (32bit)

Tag Descriptor: ID value of ProdDefectiveCount

This is the arbitrary (user defined) ID value of the defective production material. This is non-descript value that can be used for any user tag requirements. The ID value can be SKU or a user specific material identifier.

7.5.3.12.2 Admin.ProdDefectiveCount[#].Name

Data Type : STRING

Tag Descriptor: Structured array of Names in ProdDefectiveCount

The name is used to literally describe the product ID, and its associated material. An example parameter name may be PRODUCT A, XYZ PRODUCT, etc. This is also could be displayed on HMI screens. The array is typically needed for machines that have quality reporting or PDA (Production Data Acquisition) needs.

7.5.3.12.3 Admin.ProdDefectiveCount[#].Unit

Data Type : STRING[5]

Tag Descriptor: Structured array of units in ProdDefectiveCount

The unit tag is used to describe the names associated with a specific product processed by the machine. An example process unit of measure name may be FT, CNT, KG, etc. This also could be displayed on HMI screens. The array is typically used for unit machines that run multiple products.

7.5.3.12.4 Admin.ProdDefectiveCount[#].Count

Data Type : Int(32bit)

Tag Descriptor: Structured array of values

The count value is used as a variable for displaying information about the amount of defective product. The value is indexed upon the machine using a unit of the material defined by the ID and NAME. This could be displayed on HMI screens or higher level PDA systems. The counter rolls over to 0 at 2,147,483,648.
7.5.3.12.5 Admin.ProdDefectiveCount[#].AccCount

Data Type : Int(32bit)

Tag Descriptor: Structured array of values

The accumulative count value is used as a variable for displaying information about the amount of defective product. The value is indexed upon the machine using a unit of the material defined by the ID and NAME. This could be displayed on HMI screens or higher level PDA systems. This counter gives the user a non-resetting counter that may be used for OEE calculations. The counter rolls over to 0 at 2,147,483,648.
An example of the production defective counter is the following:

Admin.ProdDefectiveCount[1].ID = 546732

Admin.ProdDefectiveCount[1].Name = XYZ Product
Admin.ProdDefectiveCount[1].Units = CNT

Admin.ProdDefectiveCount[1].Count = 1005
Admin.ProdDefectiveCount[1].AccCount = 3001

Which describes defective products made by the machine ie. 1005 defective products made since the last reset of count and 3001 defective products since the last reset of AccCount.
7.5.3.13 Admin.AccTimeSinceReset

Data Type: Int(32bit)

Unit of Measure: Secs

Tag Descriptor: Accumulative time since last reset

The tag represents the amount of time since the the reset has been triggered. When a reset is triggered all resettable tags are reset which can include:
UnitName.Admin.ModeCurrentTime[#]
UnitName.Admin.ModeCumulativeTime[#]
UnitName.Admin.StateCurrentTime[#,#]
UnitName.Admin.StateCumulativeTime[#,#]
UnitName.Admin.ProdConsumedCount[#].Count
UnitName.Admin.ProdProcessedCount[#].Count
UnitName.Admin.ProdDefectiveCount[#].Count
UnitName.Admin.AccTimeSinceReset.
This value rolls over at 2,147,483,648 to 0. The tag can be used for simple OEE calculations as the definition of “scheduled production time”. The simple OEE calculation is total amount of good products divided by total amount of good products that can be produced with the unit time, with the unit of time being scheduled production time.

7.5.3.14 Admin.MachDesignSpeed

Data Type: Real

Unit of Measure: Primary Packages/minute

Tag Descriptor: Machine Design Speed

This tag represents the maximum design speed of the machine in primary packages per minute for the package configuration being run. This speed is NOT the maximum speed as specified by the manufacturer, but rather the speed the machine is designed to run in its installed environment. Note that in practice the maximum speed of the machine as used for efficiency calculations will be a function of how it is set up and what products it is producing.

7.5.3.15 Admin.PACDateTime

Data Type : TimeStamp

This tag defines the structure of date and time of the Programmable Automation Controller (PAC). The tag can be used to synchronize the clock with the PAC to the higher level systems used for OEE calculations.
7.5.3.15.1 Admin.PACDateTime.Date

Data Type : Date

Tag Descriptor: ISO Date Data type

Defines the date within the PAC in ISO 8601:1988 format (defines as seconds from January 1, 1970 at 12:00am).

7.5.3.15.2 Admin.PACDateTime.Time

Data Type : Time

Tag Descriptor: ISO Time Data type

Defines the time within the PAC in ISO 8601:1988 format (defines as seconds from January 1, 1970 at 12:00am).
8 Software Implementation Examples

The following examples are implementations are shown on multiple platforms, all of which follow the IEC 61131 programming language standards and the definitions in this report. The general technique is the programming of the mode manager, the state engine for each mode, and the individual state routines / procedures for each state.
8.1 Example 1

This example uses multiple programming methods, structured text, sequential flow charts, and ladder logic, all of which are compatible with IEC 61131. Additionally there is a dynamic visualization which goes along with the library. The layout of the software is as follows:

· The structured text is used to setup the constants values of required system variables, as well as set any initial conditions.

· A Data Module in form of a plain text file is used to configure modes, which allows an external configuration as well.

· The sequential flow chart is used to execute machine mode, and consists of the ordered states described in this technical report.

· Ladder logic is used in e.g. subroutine procedures call by the sequential state chart to execute general machine logic. Optional there are other languages like ANSII C

· Visualization object for a sample visualization which can be reused inside the complete project

General machine logic (not shown) would be in the form of events, functions, or separate tasks with a various of programming languages.

8.1.1 Example Details

Inside the software tree there are the configuration data objects, the library call inside a structured text task and a sample implementation task in sequential function chart and structured text. The configuration module can be edited externally as well as inside the programming tool. The sample tasks can be copied and used for any mode used by the user. The sample is built up for Producing mode including all the states.

[image: image18.jpg]Softwere | Pemanent | Varable Mapping | Serel | Etheret | 1/0 Mapping | IF5 Ethemet 1/0 Maping

oo Nare s Tirstrts | Seeoes) | Descton

CFU

Cyclic #1 - [10 ms]
La) sepsea Voo UserROM . 3460 Denios nerscion secuener
O Cyclic #8-[10 ms]
&) Use ROM Pacl ML Inplnertaon Tenplse of Lb

@ Sysem

Dats obiects
3 wpmlum vo.00 UserROM 1372 Example used for UNIT MODES
wom_pm Vo0 UserROM 244 Example used or PROCEDURAL MODES
pria_t 000 UserROM 152 Example used or ABSTRACT STATE MODEL

B Violzson it
Wi Voo UserROM 1308

Figure 9: Example 8.1 CPU Software Tree
The mode manager functionality is included inside the configuration for the unit modes since there is a dependency inside. The unit mode setup is done inside this plain text file as well.

Initialization is done by the Task “PackInit“ whereby the system gets its initial parameters to start up. A part out of the Sample of the states to be run through is shown inside a e.g. Structured text, ANSI C example. Out of this sample other subroutines in other tasks or functions can be called by need of the user. The basis of this task is always the same, states which are not used can be deleted, but it is not a must since this task is directly interacting with the configuration. By this task the user get the overview of the machine to have a place to interact with the machine in detail. The shown sample is showing that the machine will jump to aborted as soon as the feedbacks from the machine are given to do so. By issuing a RESET command via the Command.CntrlCmd the machine is going to clear the error and going to be stopped again. If there is no need for an aborting state this state is jumped over and not considered for the actual configured mode.

[image: image19.jpg]case ABORTING: /% 8 */
if (pParsePointerUN->iborting =
¢

EXIST)

/% State Complete Check */
if (phataldd->StateComplete
¢

256)

state ABORTED;
IdentInternal.StateRequested ABORTED

IdentInternal.StateChangeInProcess = 1
IdentInternal.StatelastCompleted ABORTING;
Ident Internal.Seqiurber++;
pDataidd->StateCanplete o
)
)
else if (pParsePointerUN->ihorting == NOT_EXIST)
¢
State = ABORTED;
)
break;
case ABORTED: /¥ 9 °/
if (pParsePointerUN->iborted == EXIST)
¢
/% Clearing command from user +/
if (pDataPMLc->CntrlCmd == CLEAR)
¢
state CLEARTNG:
IdentInternal.StateRequested = CLEARING:
IdentInternal.StateChangeInProcess = 1
IdentInternal.StatelastCompleted ABORTED
Ident Internal.Seqiurber++;
pDataPHLe->Cner 1nd o

)
else if (pParsePointerUli->Aborted
¢

NOT_EXIST)

State = CLERRING

break;

Figure 10: Example 8.1 Initialization in Structured Text
The visualization is also dynamically changing with configuration. By getting this information out of the configuration file the visualization is adopting during runtime. This gives the machine operator the ability to see the machines actual general state. As soon as a Command.UnitModeChangeRequest is issued the visualization is adopting.

[image: image20.png]AHOLONG - un- ol —

le—sc—iclomc

L.

s [

1

; [— —
AN o, :
¥ v

Figure 11: Example 8.1 Visualization Sample of Operator Interface
8.2 Example 2

8.2.1 Overview

Example 2 illustrates an implementation of this report in two ways:

· PackML library: Can be used to easily build up any type of machine control applications based on PackML. Function blocks provide a basis for unit mode selection and state handling of a machine. Predefined data structures containing the complete range of PackTags ensure a fast and easy declaration of program variables for command, status and administration signals.
· Machine Template and PackML library: The Machine Template supports the modular programming approach of ISA 88 with the combination of the PackML library.
The software uses multiple programming methods, structured text, sequential flow charts, function block diagram and ladder logic, all of which are compatible with IEC61131-3.
8.2.2 What is the Machine Template?

The Machine Template itself is a programming framework for the packaging machinery and is a part of the standard libraries (compatible with IEC61131).

The Machine Template provides an application architecture based on ISA88. The modular and scalable software structure simplifies the construction. Adjustments can be made by nesting the depth and the levels to be defined for the respective application. There is maximum flexibility throughout the entire project. The levels are according to ISA 88: line, machine and equipment modules and control modules.

It also provides predefined Unit Control modes (production, manual…) both at the machine and equipment module levels. The use of tables facilitates a transparent configuration of the machine flow control. This allows you greater programming creativity when optimizing the machine flow control.

All other basic functions for packaging machines like Exception handling, Commissioning visualization, Application Logger and typical Technology Functions encapsulated as Equipment Modules are offered and as a result fully integrated with the PackML tags. The next figure shows one screen of the commissioning tool. It is dynamically changing with configuration.
[image: image21.png]MachineControl

%
Prepare

Brake
Release
Jog
Machine

@ cwoDone

Production Mode

Un-Holding [@Un-H{ — Held Fso—' Halding ’

L.

Stating [—5C:

Aport

Control Machine Ormac vis Enatile
Panel Cantral LIS oot Logger PackilL Navigation Vi

Figure 12: Example 8.2 Visualization Sample of Production Mode
8.2.3 Programming Example

This example shows the implementation in a Machine Template based machine.

[image: image22.png]Start
- TRUE
Init
Module
- TRUE
Mode Status_8_
nput Command Select Administation| | 09k
,,,,,,,,,,,,,,,,,,,,,,,,)
| Trans1 | Trans2 1 Transn
Mode 1 Mode 2 Mode n
L NOTTranst ~ 4-NOTTrans2 | NOT Transn-1 { NOT Trans n
Stop Stop Stop Stop
Mode Mode2 Mode -1 Mode n
‘
1 ExitStop - ExitStop | ExitStop | Exitstop
i
,,,,,,,,,,,,,,,,,,,,,,,, i
L+ Mode Select
—-FALSE
L— Start

Logikn

Figure 13: Example 8.2 Programming Sample of Mode Manager
In the figure above you can see the highest level on a Packaging Machine implemented in sequential function chart. After starting the program the step “Init Module” is active. In this step all Equipment Modules will be initialized. One example of an equipment module can be a RoboticModule. The Step named Command provides the Command-Tags. Here is the logic implemented how to navigate through the different State-Models. In this Step a programmer will also find the ModeManager. The Steps “Mode 1” – “Mode n” symbolize the different Modes you can add. In Terms of PackML conformity the Step called „Status_&_Administration“ is very important. In this Step you have the possibility to use a function block called “DataManagement”. This function block will automatically collect the of capitally important OEE-Data which are defined in this document. This also includes the fitting PackML reason codes.
The following figure shows an example of the predefined data structures containing the complete range of tags for command, status and administration signals.
[image: image23.png]L] Datei Bearbeiten Projekt Einfgen Extras Oniine Fenster Hife

B8] 8@l lE EAR| %6

3 Dateriypen
154_Enums.
154 It
B3 154 TAG
B3 SubStiuct
B3 154_ST_ALARM (STRUCT)
02 154_ST_ALARMTIME (STRUCT)
%2 I54_ST_DESCRIPTOR (STRUCT)
02 154_ST_INGREDIENT (STRUCT)
02 154_ST_MATERIAL (STRUCT)
%02 I54_ST_NODES (STRUCT)
=2 I54_ST_PRODUCT (STRUCT)
02 I54_ST_STATE_INFO (STRUCT)
02 I54_ST_ADMINISTRATION (STRUCT)
11555 T_COMMAND (STRUCT)
02 154_ST_STATUS (STRUCT)

Bouston] 3 Dateryper|] Viaisnunger] 322 Fessoucer

001

[TTPE Tah_sT_comuam :

0002

STRUCT

0003

Unitlode

0004

Uni tHodeChangeRequest

0005

Hachspeed

0006

Hateriallnterlocks

007

CadChangeRequest.

008

Catrlcad

0003

Renotelnterface

010

Parameter

0L

Product.

01z

END_STRUCT

03

[e_TrPE

[y

0015

[

0017

[

0019

0020

021

0022

0023

0024

0025

0026

027

o0z8

0025

0030

031

0032

0033

0034

0035

0036

0037

0038

0039

0040

am

b
o0L;
+REAL;

+BOOL;

.
.
.

5A_ST_NATERTAL;

I5A_Ge_illumberOfiiodes] OF ISA_ST_NODES;
I5A_Ge_iNumberOfParaneter] OF ISA_ST_DESCRIPTOR;
I5A_Ge_iNumber0fProducts] OF I5A_ST_PRODUCT:

[GNLINE [08 [ESEN

Figure 14: Example 8.2 Sample Tag Structure
There are also provided various visualisation objects which will support you during implementation. An example therefore is shown in the next figure.
[image: image24.png]WachineControl

Machine Template

PackTags Value J— s
PMLs. UnithodeCurrent T vt Jaors|wae o[v
Time in Cunent Mode 70 I ot
Cummulative Time in Current Mode: 170 [—}4‘ Auto stop
PMLs. CurentState 3 e
Time in Current State. 19 A Release A
Cummulative Time in Curent State
Jog
SeqNumber. 2 e = Machine Jog
State Last Completed 3 Y
e }«ﬁ e | ’_{ v Jatal oo | _— ror
Wessage Value Sut
Start Button Pushed 3) cvooone

Time Event

Year 2007
Wonh 0
Day 29
Hour 9
Minute [

Second 30

Willisecond. 918

Contral Machine
Panel Cantral

omac vie Enatle
|||||| RELD ||||

Figure 15: Example 8.2 Visualization Sample for Implementation Support

8.2.4 Vertical integration

With the combination of the Machine Template and PackML you can easily connect your machine vertically, e.g. HMI, SCADA (Precondition: Those systems are also supporting the standards).
8.3 Example 3

This example uses multiple programming methods, structured text, sequential flow charts, and ladder logic, all of which are compatible with IEC 61131. The layout of the software is as follows:

· The structured text is used to setup the constants values of required system variables, as well as set any initial conditions.

· The sequential flow chart is used to execute machine mode, and consists of the ordered states described in this technical report.

· Ladder logic is used in subroutine procedures call by the sequential state chart to execute general machine logic.

· General machine logic (not shown) would be in the form of events, functions, tertiary state diagrams, or separate tasks.

8.3.1 Example Details

In the explorer view shown to the below, the main task runs continuously, and consists of following programs - Main Program, Producing_Mode, and Manual_Mode. The routines in the main program are the Mode_Manager, and Sys_Intialize. The programs in Producing_Mode consist of the sequential function chart for the state diagram in Producing_Mode and the corresponding routines for each state. The programs in Manual_Mode consist of the sequential function chart for the state diagram in Manual_Mode and the corresponding routines for each state in that mode. Other tasks and programs provide organization and separation between common general functions and common equipment management.

[image: image25.png]=3 Controller PackML_SFC_Template:
Controler Tags
Controller Fault Handler
Power-Up Handler
5 & ks
- €8 00 parask

&1 G Producing_Mode:
s £ Mausl_ e
8 celLconms
= 5 AL pansger
= (3 A1 _pain_program
6 WES_conms
= &5 m_oee
« 0 m_oee
8 Uni_Comms
9 Ui Fauks
Unscheduled Programs Phases
5 potion Groups
Ungrouped Axes
451 Add-On Instructions
(] Packv_Stae_odel
= £ Data Types
o G User-Defned
o Oy strngs
o C, Ackd-on-Defined
o O pecefned
(3 Moce-Defied
Trends.
5 1j0 Configuration

Figure 16: Example 8.3 Explorer View of Software

The Mode_Manager program enables which mode program will run by dynamically “pausing” the opposing task, and enabling the task (mode) which the operator chooses for the machine. The conditional logic that determines when the task should be enabled or disabled is dependent on the machine.

Expanding the Producing_Mode the PackML_V3 sequential function chart can be seen along with the state routines. As the sequential function chart cycles through the various states its corresponding state routine is called. The state routine will perform the necessary functions that may include setting parameters for equipment or control modules, verifying the functions required in the state are being carried out before progressing to the next state, or validating the functions in the corresponding state are being carried out satisfactorily.

[image: image26.png]=1 8 Producing_tode:
Program Tags
B PackiL_v3
Clsral
Ro1_clearing
oz stopped
R0 startng
R4 1de
05 Suspended
06 _Execuing
07 _stopping
R08_aborting
Ros_pborzd
R10_Hldng
Rit_peld
R1z_Urtldng
R13 Suspendng
R14_Unsuspending
R15_Resettng
Rit._Conpeting
R17 Complete

Figure 17: Example 8.3 State Routine Layout

A portion of the sequential function chart is shown below, the stopped step and the resetting step. As can be seen upon entering the stopped state the Status.StateCurrent tag is set equal to 2, which is the status tag for the state diagram, and 2 is the state number for stopped. The next line shows that the step will call a subroutine “R02_Stopped”, as seen above in the task explorer. In that routine the program will set parameters necessary for the equipment modules below. The equipment modules will use these parameters along with the state and mode information to executed the required the processes for the machine.

[image: image27.png]W] Feton 110

Mis.StaveCurrent
stoppedep 004 || |2y (R02_Seoppea ;

PO . oton 120

SBit_Stopped:=l;
=x (02_Stopped

Geto_Raseting 004
star

_Stopped_00
PHLe.State

15

PHLc.State

Reset_Comple 0
o6
franeh

W o] Fetin 130 f

Mis_StaveCurrent :=1s|

Resenng_9ep 004 | sy (R1's_Reseccing) ;

70 oton 124
SBit_Resetting:
x (RIS_Reseccing) ;

Figure 18: Example 8.3 Partial Sequential Function Chart of State Engine

When a resetting function is required the command tag, ControlCmd is to 1, and per the transition shown the next state is executed. Prior to the next step being executed a post scan bit is set to 1 and the R02_Stopped routine is run once more. The function of the post scan is to reset any bits or conditions in the Stopped state that may interfere with the subsequent states routines.

The tags used in this PackML example are defined below and appear in the processor as shown. Three tags are defined in the processors global variables. One for Control, Status and Administration tags. PMLc is of datatype PML_Control, PMLs is of data type PML_Status and PMLa is of data type PML.Admin. All tags are defined as global tags. Arrays within the user-defined tags are set to what is required for the machine. If arrays are expanded beyond what is required excessive processor memory may be used.

[image: image28.png]=5 Data Types
=63l User-pefined
Uo_pit_adrin
oT P s
o1 pHL_control
LT P pescrptor
LD Jogrecdant
LT P Haterl
oT P hode
LT P product
UoT pHL_status
LT PHL Timestanp
reatiamy

Figure 19: Example 8.3 PackTags User Defined Tags

8.4 Example 4
8.4.1 Overview
To support implementation of PackML standards into machine control applications there are various software modules and templates available for the different many automation systems. Examples of the latest developments are as follows:

· Function Blocks provide a basis for unit mode selection and state handling of a machine. They represent a useful frame for the machine dependent application code, ensuring that mode and state management is realized according to PackML guidelines.

· Predefined data structures containing the complete range of PackTags ensure a fast and easy declaration of program variables for command, status and administration signals.

.

8.4.2 Automation Templates

The Example Automation Templates, also called Libraries, delivers OMAC PackML solutions in the form of example control code and data areas. The control code consists of the Unit Control Mode Manager, Base State Model, the full PackTags data area, and other OMAC support code (Alarm Management, etc.). Furthermore, since these templates are programmed using our standard, modular programming techniques, they can be used on the newest machines or in retrofit applications. The control code is written in the IEC-61131 languages of Ladder Logic (LAD) & Structured Text (ST).

For the template below, the “Main” folder contains the central logic and function calls for the machine. The “ModeMgr”, being this example’s version of the OMAC “Mode Management Procedure”, is used to control the machines’ Unit Control Mode. This template has three (3) Unit Control Modes, being: Cleaning Mode (“UC_Clean”), Maintenance Mode (“UC_Maint”), and Production Mode (“UC_Prod”). All of the Unit Control Modes are based upon the OMAC “Base State Model”. Each Unit Control Mode consists of its’ own individual “State Functions”. The Production Mode (“UC_Prod”), shown expanded, clearly shows the entire subset of states of the Base State Model (clearing, stopped, starting, etc.)

[image: image29.png]= &P SEB_568pS_Filler
5 o
Gontroler
& xccurion sisTen
&= 1j0
€ GLOBAL DEVICE VARIABLES
= &1 rrocRaNs
A van
1F vodetvar
4F uc_clean
4F U s
4F ucprod
4 packtags()
4 unitmode_statemadel()
4 statefc_clearing()
4 statefc_stopped()
A statefc_starting()
& statefc_ide()
4 statefc_suspended()
4 statefc_execute()
4 statefc_stopping()
4 statefc_aborting()
4 statefc_aborted()
4 statefc_holding()
4 statefc_held()
4 statefc_unholding()
4 statefc_suspending()
4 statefc_unsuspending()
4 statefc_resetting()
4 statefc_completing()
4 statefc_complete()

Figure 20: Example 8.4 State Routine Template

The example below shows the “ModeMgr” interfacing the Production Mode’s Base State Mode – both as Ladder Logic (LAD) Function Calls (FC’s).

[image: image30]
Figure 21: Example 8.4 Mode Manager Interface with Production Mode
The “PackTags” data area, consist of 3 areas’: Command, Status, and Admin. The “Status” data area is shown below. The PackTags area consist of numerous data types, to include: Structures, Arrays, and User Defined Data Types (UDT’s), as well as the standard data types of BOOL, INT, Real, String, IEC Time, etc.

[image: image31.jpg]status STRUCT
ConmandRejectad Boon FasE Tf a req or incorrect product or igred
Unitcurrentiinde T o Current Mode value as a single integer
UnithodeRequested BooL FazsE Fesdback of an unit mode request to che
UnithodeChangeInProgress |BOOL FazsE Feedback of an unit mode change request
Prochodecurrent T o [value of the current procured mode - (C
ProchodeRequested BooL FazsE Fesdback of an proc mede reguest to che
ProchodechangeInProgress |BOOL FazsE Fesdback of an proc mode change request
statecurrent T o Current State of the Automatic Packagir
stateRequested T o [value for tramisition checking to ensu
statechange InProgress BooL FazsE i=request of state change (forcing of :
statechangePrograss T o Percentage complete with in a wait stat
statelastcomplete T o State number of last tranistion of act:
Seqtiumber B za0 Free running mmber incremented on each
Curtachspd T o Current selected speed of the machine |
[Materialinterlock sTRUCT Material Ready, I=ready, O-NOT ready.
Raw_Mat_1_Niat_Low BooL FazsE Rew Material # 1 io not LOW (l)else is
Rew_Mat_1_Ready oo, FassE Rew Material 4 1 is ready (1) eloe is I
2ir_pressure Ready BooL FazsE [2ir Pressure is ready (1) else is HOT :
Compressed Air Ready |BOOL FazsE Compressed Air is ready (1] else is HOI
[Tub_water_ready BooL FazsE [Tubricant water is ready (1) elee is I
Container Caps_Not Low |BOOL FazsE Container Caps are not Low (1)else is]
Container Caps Ready |BOOL FazsE Container Caps are ready (1) else is IC
mat_s Bocr, Fasse Bit for material 8

Figure 22: Example 8.4 Status Tags Template Layout

8.4.3 HMI Templates
The example solution depicts HMI templates based upon HMI Software. These HMI templates, or re-usable Faceplates, consist of pre-configured graphical libraries, such as the Unit Control Mode Manager, Base State Model (shown below), Alarm Management, among others, that can be quick configured using wizards. Additionally, the tag database of the Flexible HMI and the automation controller(s) are integrated for increased simplicity and functionality.

The Base State Model HMI template provides the user with many machine details, to include:

· State Model Status - with both a graphical status (by the highlighted “Suspended” state) and with a textual status that give the operate further details on the current mode or state (as indicated with text above and below the State Model Diagram)

· Material Interlock Status (as shown in the “Product Infeed” section in the lower-left)

· Machine Control Bits (as shown on the left buttons – Stop, Start, Reset, etc.)

· Status of the Machine’s Safety System (as shown with the E-Stop upper left)

[image: image32.png]< oneration i= SUSPENDED and viaiting /242007 3144 PM

PackllL

[un—Hddm ‘4’[Held.
L

oo o
=
———1 Reserl Susperdng

]
Stoppee] Stppng Cloing Aboreed

o @

(e

Camplting Comubted]

“The machine aperaticn Is SUISPENCIED and walti~g for ane cr more maching cordiiars that wi | allow It run
1 his e it 5 wailing for e cperater to ENABLE product a the Infeed

o (|a|v|)

Alarms
Cleared

Alarms

Simple
e Status

Model

Exit ‘ ‘ Info

Figure 23: Example 8.4 Operator Visualization for Base State Model
8.5 Example 5

8.5.1 Overview

The PackML Template provided in this example provides a state model, process variables, and associated control logic for the user’s application project. The project will appear as shown in the Figure below, with a call to a program named “PackML_State_Model_Template”. This program can be renamed to more closely identify the process being controlled (e.g. “Filler”). The program can also be called multiple times within the project if more than one process is to be controlled by a single PLC.

[image: image33.png]Fle Edt project Insert Extras

Online_Window _Help

~=lolx|
=l81x|

||_| e T e = e o e e e e e e T |

[0001]PROGRAM PLC_PRG

ERIY
PackML_State_Modsl_Templa|

« o

"B Fof"E0 mv R]

o002

0003/Project: PML_Template.
0004/ Author

o00s|Date: January 27, 2007
0006|Revision: 1.00

o007]

0008 The purpose of this template is to serve as a guideline for the control and automation of automated
0003/ machinery and systems by end users, equipment builders, and technology suppliers.

o011

0011/ The code within this template provides the framewark for developing applications following the
0012| PackML State Model. All machine status, operating states, and commands as defined by the Base
0013]State Model are supported. Users are allowed to edit this framework to meet the indiidual needs of
0014 heir application.

015]

0046{Tag naming conventions used within this project adhere to the PackTags Version 3.0 guidelines.
0017|PackTags are named data elements used for open architecture, interoperable data exchange in
0018/automated machinery. Alltags defined by PackTags Version 3.0 guidelines have been declared in this.
0013/ template as the proper datatype or construct, and are ready for use. Logic has been included for
0020|updating PackTag variables whose definition is consistent across all automated applications (e.g. current
0021and cumulative Mode and State Timers).

I

(T)
001 =
PackL_State_Model_Tempiate
N
MLl Filler
K1)

3

EEED

Figure 24: Example 8.5 PackML Template Block
The logic within the PackML_State_Model_Template executes the Base State Model defined by the PackML guidelines. The implementation of this state model, partially shown in following figure, is written in Sequential Function Chart (SFC), one of six languages supported by the development software.

[image: image34.png]emplate_3.0.pro - [PackM emplate (PRG-SFC)] =181 x|
® Fle £t Pojct Insert Exras Onine window Hep 15|

Jel == e R o e A e o e e K A Y =Y = N S S

D00[PROGRAM PackML_State_Model_Template

0002]vAR I
0003 (" Step Transition Tags)

i) PLC_PRG (PRG) 0004 Abort :BOOL;
0005 AbortComplete : BOOL;
0006 Hold :BOOL;
0007 HoldComplete :BOOL:
0008 MachineFault :BOOL:
0009) MaterialsReady : BOOL:
0010 MaterialsRunout : BOOL;
STOPPED
E

—-Prepare PowerOff
OFF
STARTING l
]
-StartComplete MachineFault Stop Avort
ABORTING STOPPING ABORTING
k1]
B JEvRA] | [I o]

T [GNONE [6 [FERD

Figure 25: Example 8.5 Structure Flow Chart for Base State Model
The SFC logic controls the transitioning between the modes of operation as defined by the state model. The transition tagnames are predefined, and are ready for the user to associate with the actual sensors and conditions specific to the automated operation. For example, the tagname “MaterialInterlocks” will be logically assigned by the user to one or more sensors or interlocks indicating that the necessary materials for the process are present. When the corresponding bit in the “MaterialInterlocks” tag is set true, the state model will transition the process from standby mode to producing mode.

The PackML_State_Model_Template provides declarations of all process variables defined by the PackML guidelines for monitoring and reporting process performance characteristics. Within each function block shown in the state model, much of the control logic to maintain these process variables is already written. It is here that the user can add additional control logic for machine specific functions. The user can program in any of the IEC 61131 programming languages, such as Ladder Diagram or Structured Text.

8.6 Example 6

This example implementation integrates the HMI to display the graphics and the logic to allow control of the PackML State Model. The PackTags and required logic are implemented in the Application server. The Application Server has objects that match the PackTag structures defined in this document. Also a Sequencer object is used to implement the necessary State Model sequencing to move from state to state and any state level sequencing.

8.6.1 Example Details

The Template Toolbox below shows the PackML Unit Control Mode template object. The top level object handles the sequencing of the state model. This sequencing defines the rules required to move from one state of the model to another. The object named “Instructions” performs the sequencing for each step. Each step in the state model has a given set of instructions that will be executed when the machine is in a particular Unit Control Mode. Below is a picture of the Sequencer Program for both State Models.

[image: image35.jpg]] Example PACKML
E-@ $PackML30
=@ Admin
E-@ Alarm
@ Timeack.
@ TimeEvent
2@ Asmrisory
@ Timeack.
@ TimeEvent
@ Parameter#001#
@ Parameter#002#
@ Command
@ Parameter#001#
@ Parameter#002#
@ Product#001#
=@ Ingredient#001#
@ Parameter#001#
@ Parameter#002#
=@ Ingredient#002#
@ Parameter#001#
@ Parameter#002#
@ Processvarisble#0014
@ Processvarisble#0024
@ Product#002#
=@ Remotelnterface
@ Parameter#001#
@ Parameter#002#
@ Instructions
=@ Status
@ Parameter#001#
@ Parameter#002#
@ Product#001#
=@ Ingredient#001#
@ Parameter#001#
@ Parameter#002#
=@ Ingredient#002#
@ Parameter#001#
@ Parameter#002#
@ Processvarisble#0014
@ Processvariable_002
@ Product#002#
=@ Remotelnterface
@ Parameter#001#

Figure 26: Example 8.6 Template Toolbox
The objects Admin, Command, and Status provide the interface for the PackTags defined in this document. The objects themselves define the interface necessary to control the execution and processing of the state model. The PackTags definition defines other structures that represent Alarms, Remote Interfaces, Products, and Process Variables. These structures are defined in objects that have the same name as the structure type. The definition allows for multiple copies of the structure to be used in the system. The example shows only two of each kind of object, but is capable of supporting any number of objects.

These templates are created and tested to verify their functionality works correctly. Then these templates can be used to make instances for each Unit or Supervisory system in the application. The templates are designed to allow quick and easy implementation without all the added work of setting PLC I/O mapping and testing. These templates are designed to interact with the data from any available Unit according to the PackML guidelines.

The example is designed to be a Supervisory State Model. The templates are designed and will function as the Equipment State Model if necessary. Depending on your need for your project you can implement the solution without requiring the definition of a State Model in the PLC.

[image: image36.png]$State_Model

top rogram | fases | settings | bject nfornaton | s | LDk | Extensers |

soopop oot | [ot | o | | vadss |

Step Program Name: [Butomatic (Production) Step Program Comment:

kil step e [19 Butomatic (Producion) St Model

Finsl Step Name: — =

Steps: Output Alases:
[£ [S
Step [step Name [Condtion | Trigger [Timer Preset | wri... [Condtion | Trigger [Timer Preset | Wri.. [Jump To |
T e] [] O He_bore 0000005 S === 7
2 sttng @ [() Starting_bone o0:00:00:05 7 e 7
5 Beat [[O Execte bone o0:00:00:05 7 e 7
[+ Completing [&] [-] (3 Complting Done 00:00:00:05 7 e 7
5 Complete [&] [-] (3 Complete Done o:00:00:05 7 e 7
6 Resettng | o o o 7 [[] (3 Resetting Done o0:00:00:05 7 e
7 todng (@ [5] (3 Hokding_Done o:00:00:05 7 e 7
o he [[2] 3 Held_bore o:00:00:05 7 e 7
o Untoldng | e o o 2 B[Unedngbone 00000005 7 Eeate
10 Suspendna (& [] (3 Suspending Dane 00:00:00:05 7 e 7
it Suspended [5] [] (3 Susbended Done 00:00:00:05 7 - - 7
2 Unsuspen. o o o 7 [[] (3 Unsuspending Done 00:00:00:05 7 Eeate
13 aboting @] [] (3 Aborting_Done o:00:00:05 7 e 7
14 aboted [&] [] (3 Aborted Done o:00:00:05 7 e 7
5 Ceaing | o o o 7 B[] () Cearing bone o0:00:00:05 2 sopped
16 stopring @] [] (3 Stoping_bone o00:00:05 7 e 7
7 stopped = o o 7 B[] Stomped_bone o0:00:00:05) Resetting
Sterting step program valdation (5:30:47 P}
Doe -
[aldaton competed with 0 errr(s), 0 warring(s)

Figure 27: Example 8.6 Sequencer Program for Automatic Mode State Model
8.6.2 Graphic Example

To provide the user of the equipment or system the capability to interact with the State Model there are graphic symbols defined using the example program. These graphical symbols will work with the Application Server as shown in this example, but can also be used stand alone. Here is the graphical symbol for the State Model interface.

[image: image37.jpg]—

Starting i i~ Complete
—

(......) Un-Suspend

A—
Resetting Un-Suzpending - Suspending
| — | — | —
Stop *

-_— @ A—

d T~ ! borted
Stoppe Stopping Clearing Aborte
J C—y

Figure 28: Example 8.6 Graphic Example of User Interface

Each state will change colour to indicate which state the system is running in. This diagram shows the colour of each state when it is active. The lighter shaded states are defined as a “Wait” state. The darker shaded states are defined as an “Acting” state. The “Execute” state is defined as a “Dual” state. The arrows with a label can be used to move from a “Wait” state to an “Acting” state.

The graphic below can be used to view and control the current execution of the State Model. The six buttons on the right allow control of the State Model. This object can be used instead of the graphic above. This example graphic only provides the six commands listed, but could be modified to include all nine commands if desired.

[image: image38.jpg]Unit Control M-d:::lﬂ\luuun(l ==
it rocedure ade: EAIOMENG]

state Number: |1 =
State Name: [-Otarung |

Figure 29: Example 8.6 Unit Control

The graphic below is used to view the Parameter array structure. There can be any number of parameters and each parameter will have an ID, Name, Value and Units of Measure. If desired this graphic could be expanded to show more than the 8 lines of information. The scroll bar at the right would allow the graphic to show more than the 8 lines of information.
[image: image39.emf]
Figure 30: Example 8.6 Parameter Array Structure

This graphic shows how the Product array structure might be viewed. There can be any number of products. Each product will have an ID, Process Variables, and Ingredients. There can be any number of Process Variables and Ingredients. Ingredients can have any number of parameters. This graphic could be expanded to show more than the 8 lines of information. The scroll bar at the right of each object allows the graphic to show more than the 8 pieces of information.

[image: image40.jpg]

Figure 31: Example 8.6 Product Array Structure

9 OEE Implementation Examples

This example illustrates the use of PackTags in calculating OEE, Overal Equipment Effectiveness. The scope of this example is broken into four sections. The first section is to define OEE and explain the basic theory of OEE. The next two sections will show two different examples of how OEE could be calculated. One example will show how an HMI or PLC could calculate a real-time OEE. The second example will show how a higher level system could perform a more complex historical OEE calculation. In the last example is a PackTags OEE harmonization with the European DIN 8782 standard on Beverage Packaging Technology.
9.1 OEE Definition

Overall Equipment Effectiveness (OEE) is a measure comparing how well manufacturing equipment is running compared to the ideal plant. The resulting measurement is expressed as the ratio of the actual output of the equipment divided by the maximum possible output of the equipment under ideal conditions. OEE is calculated by multiplying three independently measured values: Availability, Performance Rate, and Quality Rate. The fundamental OEE definition is defined as an availability ratio multiplied by a performance ratio multiplied by a quality ratio.

OEE = Availability x Performance x Quality

Where each component is defined as the following:

Availability = Operating Time / Planned Production Time

Performance = Total Pieces / (Operating Time* Ideal Run Rate)

Quality = Good Pieces / Total Pieces

OEE is often displayed as a waterfall object in which the major components of Availability, Performance, and Quality are displayed graphically. Losses are further subdivided into categories within the OEE sections.

[image: image41.emf]Total Time

Planned Maintenance

Curtailment

Planned Production Time

Changeover Mode

Cleaning

Unplanned Maintenance

Operating Time

Breakdowns

Availability = Operating Time/ Planned Production Time

Small Stops

Reduced Speed

Processed Parts Time Credit

Performance= Total Pieces / (Operating Time * Ideal Run Rate)

Startup Rejects

Production Rejects

Good Parts Time Credit

Quality = Good Parts / Processed Parts

Typical OEE Waterfall Object

Figure 39: OEE Waterfall Diagram

9.1.1 Availability Definition

Availability is defined as operating time divided by planned production time. The basic concept behind availability is to show the time the machine has been running divided by the time that the machine has been planned to run. Typical losses in this area are losses to unplanned maintenance, cleaning, changeovers, and breakdowns.

Availability = Operating Time / Planned Production Time

Operating Time is defined as the amount of time the machine has been attempting to produce parts.

Planned Production Time is defined as the total amount of time the machine has been scheduled to run.

The availability category is designed to capture the following losses:

1. Unplanned Maintenance

2. Breakdowns

a. Tooling Failures

b. General Breakdowns

c. Equipment Failure

3. Setup and Adjustments

a. Setup/Changeover

b. Operator Shortages

c. Major Adjustments

d. Warm-Up Time

4. Unable to Run Equipment

a. Material Shortages

b. Labor Shortages

9.1.2 Performance Definition

Performance is defined as the total number of pieces on which the machine operated divided by the ideal production if a machine ran perfectly for the allocated amount of operating time.

Performance = Total Pieces / (Operating Time* Ideal Run Rate)

Total Pieces is defined as good pieces and bad pieces during the production run. This should be linked to the main consumed count of the machine. If a filler, this should be bottles into the filler.

Operating Time is defined as the amount of time the machine has been attempting to produce parts. (same as above)
Ideal Run Rate is defined as the ideal rate that the machine can run for the product that is being run on the machine and the way the machine is configured. .

The performance category is designed to capture the following losses:

1. Small Stops

a. Obstructed Product Flow

b. Component Jams

c. Misfeeds

d. Sensor Blocked

e. Delivery Blocked

f. Cleaning/Checking

2. Reduced Speed

a. Rough Running

b. Under Nameplate Capacity

c. Equipment Wear

d. Operator Inefficiency

9.1.3 Quality Definition

Quality is defined as the total number of good pieces divided by the total number of pieces on which the machine operated.

Quality = Good Pieces / Total Pieces
Good Pieces is defined as only good pieces processed during the production run. So this is the main production processed count of the machine. If a filler, this should be bottles out of the filler.

Total Pieces includes good pieces and bad pieces during the production run. This should be linked to the main consumed count of the machine. If a filler, this should be bottles into the filler. This should be the same count as used in the performance definition.

The quality category is designed to capture the following losses:

1. Startup Rejects

a. Scrap

b. Rework

c. In-Process Damage

d. In-Process Expiration

e. Incorrect Assembly

2. Production Rejects

a. Scrap

b. Rework

c. In-Process Damage

d. In-Process Expiration

e. Incorrect Assembly

9.2 Calculating a Real-Time OEE in a PLC or HMI

The first example is a simple real-time calculation based upon PackTags with data originating from the PLC. This example will not require historical tracking of information and will show a calculation of OEE since the last time the machine counts and timers were reset in the PLC. This example is recommended for machine builders and control vendors that want to show a basic OEE on their HMI systems.
The limitation of this calculation will be that it will only be valid for the time period since the last time the counts and times were reset in the PLC. It will also be invalid if the setup or product of the machine causes the design speed of the machine to change.

OEE = Availability x Performance x Quality
9.2.1 Availability

Availability = Operating Time / Planned Production Time
Planned Production Time is defined as the amount of time that the machine is scheduled to run production. This includes time such as changeover time, unplanned maintenance time, and major breakdowns. For this implementation, it will be assumed that the machine is always scheduled to run. The number of total seconds since the last reset occurred can be obtained using the following tag: UnitName.Admin.AccTimeSinceReset

Operating Time is defined as the time the machine has been attempting to run production. This should be linked to the time that the machine has been in production mode. The number of seconds in production mode since the last reset occurred can be typically obtained using the following tag: UnitName.Admin.ModeCumulativeTime[#] where the # is typically 1 for Producing Mode.
9.2.2 Performance

Performance = Total Pieces / (Operating Time * Ideal Run Rate / 60)

Total Pieces is defined as the total pieces that have been brought into the machine from the primary production path. The number of units that have been brought into the machine since the last reset can typically be obtained through the following tag: UnitName.Admin.ProdProcessedCount[#].Count where the # is typically 1.

Ideal Run Rate is defined as the maximum rate the machine can run given the current product and setup of the machine. This number may change based upon a product being run on the machine. Should this number change, then the OEE calculation will become invalid. It is suggested that if this number ever change, that a reset on the count and timers should occur. The number of units per minute for the ideal run rate can be obtained using the following tag: UnitName.Admin.MachDesignSpeed.
Note: Because the unit of time for MachDesignSpeed is in minutes and the operating time is in seconds, there needs to be a unit correction factor in the above equation. We have chosen to divide the MachDesignSpeed by 60 to convert it into units per second. This will keep units consistent in the above equation.

9.2.3 Quality

Quality = Good Pieces / Total Pieces
Good Pieces – This includes only good pieces during the production run. So this is the main production processed count of the machine. If a filler, this should be bottles out of the filler. The number of good pieces of production that have been run since the last count reset can be obtained by subtracting the total products processed minus the products that were defective: UnitName.Admin.ProdProcessedCount[#].Count - UnitName.Admin.ProdDefectiveCount[#].Count where the # is typically 0 for both counters as a default. If multiple products are being tracked the index may change.
Total Pieces is defined as the total pieces that have been brought into the machine from the primary production path. The number of units that have been brought into the machine since the last reset can typically be obtained through the following tag: UnitName.Admin.ProdProcessedCount[#].Count where the # is typically 0 as a default. If multiple products are being tracked the index may change.
9.2.4 Overall Real-Time OEE Calculation

When multiplying Availability, Performance, and Quality the following equation for OEE is produced:

[image: image42.wmf]UnitName.Admin.ProdProcessedCount[#].Cou

nt - UnitName.Admin.ProdDefectCount[#].C

ount

UnitName.Admin.AccTimeSinceLastReset * U

nitName.Admin.MachDesignSpeed / 60

OEE

=

9.2.5 Limitations of Real-Time OEE Equation

The above real-time OEE equation is only valid for the time period since the times and counts were last reset in the PLC. It also becomes invalid if the MachDesignSpeed is ever changed. Should there be desire to compute a more detailed OEE equation or an OEE equation over a different time period, then please examine the second example that involves keeping track of historical data in a higher level system.

9.3 Calculating a complex historical OEE using a historical database based system

This second example will assume a higher level system such as an OEE tracking system or an MES system has been installed and is capable of storing information into a database. The higher level system should also be capable of performing complex calculations. In this example, information will retrieved from the PLC using PackTags, but will be stored and calculated in a higher level system. This example is recommended for advanced users who need to analyze OEE over an arbitrary time period and who need to be detailed analysis of their OEE losses.

OEE = Availability x Performance x Quality
Availability = Operating Time / Planned Production Time
Planned Production Time is defined as the amount of time that the machine is scheduled to run production. This includes time such as changeover time, unplanned maintenance time, and major breakdowns. It should subtract out time that the machine is not planned to run for such times as planned maintenance and curtailment. This time should come from a higher level planning system such as an MES or ERP system.

Operating Time is defined as the amount of time the machine has been attempting to produce parts while the machine is scheduled to run production. This time should be computed in a higher level system by monitoring the following tags:

UnitName.Status.UnitModeCurrent and the UnitName.Status.StateCurrent
Through monitoring the above tags, a higher level system should keep track of the exact time that each of these tags change. By keeping track of the time that these tags change, a higher level system can compute the amount of operating time a machine has occurred. It is important to note that a higher level system should only compute the time for operating time while the machine is scheduled to run production. The periods of time the machine is scheduled to run production will need to be obtained from an MES or ERP system.
Performance = Total Pieces / (Operating Time * Ideal Run Rate)
Total Pieces includes good pieces and bad pieces during the production run. This should be linked to the main consumed count of the machine. If a filler, this should be bottles into the filler. This should come from the following tag:

 UnitName.Admin.ProdProcessedCount[#].AccCount

This value rolls over to 0 at the user defined maximum count of 2,147,483,647 and doesn’t reset. A higher level system should be continually monitoring this count and then storing the count delta at some interval period. An example of this would be to monitor this count and then to store the count delta every minute into a database. A higher level system could then use this information to compute an OEE count for an arbitrary time period. The resolution of storage will determine the resolution of accuracy on the boundary conditions of the times.

Operating Time is defined in availability above and is the same equation.

Ideal Run Rate is the ideal rate that the machine can run for the product that is being run on the machine and the way the machine is configured. This is read through the tag:

 UnitName.Admin.MachDesignSpeed.

Because the ideal run rate changes over time based upon setup of the machine and the product that is currently being run, the value must be tracked in the higher level system every time it changes. Then the time weighted average of the MachDesignSpeed must be computed. It is important to only take into account the time periods for which the operating time is applied when computing the time weighted average for the ideal run rate.

Qualty =Good Pieces / Total Pieces
Good Pieces includes only good pieces during the production run. This should be linked to the main produced count of the machine. If a filler, this should be bottles out of the filler. This should come from the following derivation:

UnitName.Admin.ProdProcessedCount[#].AccCount - UnitName.Admin.ProdDefectiveCount[#].AccCount

Where typically, the main cycle count, or total number of products processed by the machine be indexed at 0 and the total number of culled or rejected products for the main path of the machine is also indexed at 0 for default products numbers. If multiple products are being tracked the index can vary.

A higher level system should be continually executing this calculation and then storing the count delta at some interval period. An example of this would be to monitor these tag counts and then to store the resultant and continue to compute a delta every minute into a database. A higher level system could then use this information to compute an OEE count for an arbitrary time period. The resolution of storage will determine the resolution of accuracy on the boundary conditions of the times.

Total Pieces is defined in the performance section above.

It is very common for OEE analysis to divide quality losses between startup losses and non-startup losses. Should this be a concern, a higher level system can simply monitor the mode and state tags to determine the mode and state of the machine.

UnitName.Status.UnitModeCurrent and the UnitName.Status.StateCurrent
By monitoring the two tags and defining the definition of startup losses, a higher level system can look at the counts above during the time period to determine startup losses.

9.3.1 Further Analysis of Performance

It is extremely common to monitor the subcomponents of performance to try and understand the main causes for OEE loss in performance. The two most common losses to be monitored are low speed loss and small stop loses. This example will discuss how both of these losses can be further monitored using PackTags.

9.3.1.1 Low Speed Losses

The current machine speed can be read through the tag UnitName.Status.CurMachSpeed and the designed speed for the machine for the current product and current setup is in the tag UnitName.Admin.MachDesignSpeed. Both of these tags can be monitored and their values can be stored in a database on a periodic basis. When computing a low speed loss, we can integrate these two curves over a given time period and then subtract the two. It is important to once again, only take into account the time the machine was accumulating operating time and the time that a small stop event was not occurring.

9.3.1.2 Small Stop Losses

Small stop losses are one of the largest reasons for OEE losses and include such events as jams and material blockages. Automating the collection of small stop losses through a standard interface is one of the main value propositions of PackTags. The following describes the process by which information should be collected:

9.3.1.3 Mode or State Transition

When a machine changes mode or state, we can monitor the state that the machine goes into and then capture all active alarms when the state transition occurred. While in production mode, it is important to track why the machine leaves Execute mode. In particular, it is good to know why a machine would go into Held, Suspended, Aborted or Stopped. By monitoring the following two tags, we can determine the current mode and the current state:
UnitName.Status.UnitModeCurrent and the UnitName.Status.StateCurrent
Typically the UnitName.Status.UnitModeCurrent has a value of 1 when the machine is Producing mode and the UnitName.Status.StateCurrent has a value of 6 when the machine is executing. Whenever the transition from executing happens, the following algorithm should be run to determine the cause of the machine stoppage.

9.3.1.4 Loop Through the Active Alarm File

Through monitoring the Admin.Alarm[#] array, a program can determine the cause of the machine changing states if the state is automatically changed. This can be done by looking up the alarms that are active. If more than one alarm is active, then we can resolve the reason the machine stopped to the alarm that occurred most recently. This is done by looking at the time the state or mode transition occurred and then looking at the alarm file for the first event that occurred before the machine stopped.

The following is an example determining a small stop cause:
1. A higher level system should be constantly scanning the fault array to have the current state of all currently occurring alarms. The higher level system will have the alarm state of all alarms prior to receive a state or mode transition.

2. When a machine transitions from Executing to Suspended because of a jam sensor goes off. The state status, UnitName.Status.StateCurrent goes from 6 to 13.

3. The higher level system receives the OPC change event from the OPC Server that the value of the status word changed from 6 to 13.

4. The higher level system should immediately perform a synchronous read of the alarm file to read the entire alarm file.

5. The higher level system will compare the previous alarm file with the alarm file that was just read. Because the alarm file only contains active alarms and the alarm file is sorted in chronological order, the higher level system should be able to identify the alarm that caused the shutdown.

The reason we cannot just take the first alarm in the alarm file as a cause is because not all alarms may cause a state transition, although this is machine dependent. If a machine chooses to implement an Alarm file that only transitions the machine, then the above logic will work in that case as well.
9.3.2 Limitations of a historical OEE calculation

If a higher level MES system or an OEE tracking system can save all of the data generated through a PackML interface, there are very few limitations that can be calculated using the above methods to determine OEE. It is recommended that a high speed OEE solution or high speed historian be used to accurately store all of the high speed high resolution values directly from the plant floor into a modern higher level system for analysis.
The complexity is high for the above calculations, but is required for an accurate calculation of OEE and all of the areas of loss.
9.4 DIN 8782 OEE Harmonization Example
The following example harmonizes PackTags with the DIN 8782 standard “Beverage packaging technology; terminology associated with filling plants and their constituent machines” which are terms that are also consistent with the Weihenstephan Standard. This example will describe the DIN concepts of Availability, Performance and Quality and their definitions. Subjective data, such as time spent in Holidays or unplanned shifts may be either harmonized in the local controller with general Admin.Parameter[#] administration PackTags, or with higher level systems.
Overall Equipment Effectiveness (OEE) is a measure of comparing how well manufacturing equipment is compared to an ideal piece of equipment. Below is the characteristic waterfall diagram describing the DIN standard.
	(Calendar Hours)

	 (Paid Factory Hours)
	Capacity losses

	 (Adjusted Paid Factory Hours)
	Paid Factory Hours Adjustments
	

	 (Operating Hours)

	Actual M&C
	
	

	 (Processing Hours)

	Allowed Stops
	
	
	

	 (Machine Hours)

	Service Stops
	
	
	
	

	Standard Hours (Actual output at rated) speed)
	Quality losses
	Speed losses
	Downtime losses
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Figure 40: DIN 8782 OEE Diagram

9.4.1 Definitions

Calendar Hours represents the total calendar time in hours available for use of the unit machine. It is the actual time that the unit is physically available, irrespective of whether it is being scheduled or not. This tag is not explicit in PackTags and will need to be parameterized if it is required at the controller level. The value can be calculated by the machine controller locally using Admin.Parameter[#] tags.
Paid Factory Hours is the difference between Calendar Hours and Capacity Losses. Capacity losses are the time losses incurred due to the unit not being utilised for production, cleaning or maintenance. This means paid factory hours are equal production hours + actual maintenance and cleaning time. This tag is not explicit in PackTags and will need to be calculated if it is required at the controller level. Paid Factory Hours is the sum of the Admin.ModeCummulative[#] array, which is equal to the number seconds in all machine modes. This tag will be can be reset at the controller level, if long term storage is required the tag can be moved to an Admin.Parameter[#] or to a higher level system.
Capacity Losses: This is the time the unit is not utilised either for production or for maintenance and cleaning, because of agreed or legislated public holiday or company policy requirements. (e.g. Religious holidays, Shifts not planned in either weekends or weekdays.) Capacity Losses are calculated from Calendar Hours minus Paid Factory Hours.
Adjusted Paid Factory Hours is the difference between Paid Factory Hours and Paid Factory Hours Adjustments. Paid Factory Hours Adjustments are time losses, which are beyond the control of the total plant i.e. external occurrences, which influences the plant capability to run or produce. The value can be stored locally in the Admin.Parameter[#] or by the higher level system.
Operating Hours is the difference between Adjusted Paid Factory Hours and Planned Maintenance and Cleaning Hours (M&C Hours). A recommended guideline for maintenance and cleaning as a percentage of paid factory hours is ±10 percent. When recording maintenance and cleaning, the actual time used for these activities, irrespective of whether the time falls in or out of the planned shift hours, and irrespective of who and how many people are used for maintenance and cleaning, should be recorded and reported. To track using PackTags the relative Admin.ModeCummulative[#] tags that are associated with cleaning and maintenance activities can be summed, and scaled.
Processing Hours is the difference between Operating Hours and Allowed Stops. Allowed Stops are machine downtime allowances that result from specific operating requirements for a packaging line. These could be brand, pack, shift pattern or technology related. The Allow Stops are based on the time the unit was stopped, however if the time taken to do a changeover is longer than the specified time, that actual time should be recorded against the machine. Allowed Stops are not tracked within PackTags. If Allowed Stops are to be tracked and Processing Hours calculated, stop codes may need to be examined and time spent for specific stops relating to downtime allowances will need to be accumulated and managed within Admin.Parameter[#] or the higher level system.
Machine Hours are the difference between Processing Hours and Service Stops. Service stops are time lost on a unit due to factors that are “external” to the unit but that are Plant controllable. Service Stops are not tracked within PackTags. If Service Stops are to be tracked and Machine Hours calculated, stop codes may need to be examined and time spent for specific stops relating to downtime allowances will need to be accumulated and managed within Admin.Parameter[#] or the higher level system.
Quality Loss are losses that are incurred when a unit produces poor quality product or the process is out of spec (impact on product quality) i.e. Raw material quality/out of spec. problem. Examples of quality losses are:
· Product rejects

· Product rework

· Frozen product that is not fit for commercial use sale.

· Stoppages due to the process or product that is not within the quality specification
Quality losses can be parameterized to time values by using the defective count divided by machine speed to calculate the time due to quality losses. PackTags uses the tags Admin.ProdDefective[#] for defective products and Status.CurMachSpeed for the current machine speed.
Speed losses are performance related losses. Examples of speed losses are as follows:

· Rated speed variations

· Machine ramp up and slow downs

Speed losses are normally recorded, but may be classified as “unidentified” or “unaccountable” if they are not fully assignable – usually calculated as the difference between the calculated stoppage time and the captured time. Speed losses can be parameterized in terms of proportional time as well by assuming the speed difference is lost product and therefore lost time. The quantity of Admin.MachDesignSpeed minus Status.CurMachSpeed divided by the time at Status.CurMachSpeed will yield the lost product opportunity. Using the lost product and dividing by the Admin.MachDesignSpeed will yield the lost machine time.
Standard Hours (Actual output at rated speed) is Actual Saleable Product(Units) / Rated Speed of the Line (Units/Hour). The Accumulated Actual Saleable time is Admin.ProdProcessedCount[#].AccCount – Admin.ProdDefectiveCount[#].AccCount. Rated Line Speed from PackTags is the Admin.MachDesignSpeed.
Using the information above the following can be calculated:
Operating Efficiency (%) A measure of how effectively the machine has performed relative to the time period available given that adjustments & “mandatory” preventive maintenance and planned cleaning activities have been excluded.

[image: image43.wmf]StandardHours

*100%

OperatingHours

Machine Efficiency (%) A measure of how effectively the unit machine has performed relative to the time period available once adjustments, actual M&C, actual allowed stops/service stops have been excluded.

[image: image44.wmf]StandardHours

*100%

MachineHours

9.4.2 General Operational Efficiency Examples
The operation calculation of “man hours per consumed material” is useful for the evaluation of work productivity.

[image: image45.wmf]EmployeeHours

Admin.ProdConsumedCount[#].Count

å

In this example the numerator is the sum of employee hours attributed to the production output and consumption of raw materials on a machine. The consumed material used during that same time period can be counted in the Admin.ProdConsumedCount structure for all raw materials needed. This calculation can be used for bottling lines to account man-hours per liter of beverage.
Calculations using the ratio metric formula above can be used to evaluate the usage of auxiliary and operating supply items by evaluating any consumed materials against another or the machine output :

· Heat used per bottle

· Cold H20 used per bottle
· CO2-usage per bottle

· Volume of liquid per bottle

· Product per bag

· Etc.

A.1 Alarm Codes
	
	Example
	Example: Reason Code Index description

	Admin.Alarm[#].
ID
	
	Admin.Alarm[#].
Value
	Admin.Alarm[#].Message

	0
	Undefined
	
	

	1 – 32
	Machine Internal Reason - Safeties – PreDefined

	1
	E-Stop pushed
	1
	E-Stop : Discharge

	
	
	2
	E-Stop : Infeed

	
	
	3
	E-Stop : Back Side

	2
	Perimeter Protection Fault
	
	

	3
	Mains turned off
	
	

	4
	Safety Gate/Guard Door Open
	1
	Front Panel Open

	
	
	2
	Panel FHS Open

	
	
	3
	Closure Error on Crowner

	
	
	4
	Rear Panel Open

	5-32
	Reserved for future OMAC defined safety codes
	

	
	
	
	

	33 – 64
	Machine Internal Reason – Operator Actions – PreDefined

	33
	Cycle Stop Button Pushed
	1
	Stop Production

	
	
	2
	Stop by Operator

	34
	Start Button Pushed
	
	Start Beverage Pump

	35
	Reset Button Pushed
	
	

	36
	Jog Mode Selected
	
	

	37
	Automatic Mode Selected
	
	

	38
	Manual Mode Selected
	
	

	39
	Semi-Automatic Mode Selected
	
	

	
	
	
	

	40 - 64
	Reserved for future OMAC defined operator action codes

	
	
	
	

	65 – 256
	Machine Internal Reason – Internal Machine faults – Product related - PreDefined

	65
	Material Jam
	
	

	
	
	
	

	66 - 256
	Reserved for future OMAC defined internal material related codes

	
	
	
	

	257 - 512
	Machine Internal Reason – Internal Machine faults – Machine related - PreDefined

	257
	Machine Jam
	
	

	258
	Electrical Overload
	
	

	259
	Mechanical Overload
	
	

	260
	Drive Fault
	
	

	261
	Drive Failure
	1
	Temperature

	
	
	2
	Freqency Control

	
	
	3
	Over Voltage

	
	
	4
	Under Voltage

	
	
	5
	High Current

	262
	Servo Axis Fault
	
	

	263
	Servo Axis Failure
	
	

	264
	Communication Error
	
	

	265
	PLC Error Code
	1
	Malfunction - Program Not Equal

	
	
	2
	Hardware Config Fault - System Fault

	
	
	
	

	266
	 Vacuum
	1
	Maintenance Switch Off Vacuum Pump

	
	
	2
	Failure Thermistor Vacuum Pump

	267
	Air Pressure
	1
	High

	
	
	2
	Low

	268
	Voltage
	1
	24Vdc Fuse Failure 01

	
	
	2
	24Vdc Fuse Failure 02

	
	
	3
	24Vdc Fuse Failure 03

	269
	Temperature
	1
	High

	
	
	2
	Low

	270
	Hydraulic Pressure
	1
	High

	
	
	2
	Low

	271
	Hydraulic Level
	1
	High

	
	
	2
	Low

	272
	Hydraulic Temperature
	1
	High

	
	
	2
	Low

	273 - 512
	Reserved for future OMAC defined internal machine related codes

	
	
	
	

	513 – 999
	Machine Internal Reason – General Information - PreDefined

	513
	Counter Preset Reached
	
	

	514
	Product Selected
	
	

	515
	Local Slow Speed Requested
	
	

	516
	Local Medium Speed Requested
	
	

	517
	Local High Speed Requested
	
	

	518
	Local Surge Speed Requested
	
	

	519
	Remote Speed Requested
	
	

	520
	Drive Warning
	
	

	521
	Servo Warning
	
	

	522 - 998
	Reserved for future OMAC defined general information related codes

	
	
	
	

	999
	Catch All - Unidentified internal reason
	

	1000 – 1999
	Machine Internal Reason – Vendor Defined
	

	1000
	Vendor defined area for machine internal items
	

	
	
	
	

	2000 - 2499
	Machine Upstream Process Reason – PreDefined

	2000
	Infeed Not turned On
	
	

	2001
	Infeed Overload
	
	

	2002
	Low Prime Material
	
	

	2003
	High Prime Material
	
	

	2004 - 2498
	Reserved for future OMAC defined upstream related codes

	2499
	Catch All - Unidentified upstream reason
	

	
	
	
	

	2500 - 2999
	Machine Upstream Process Reason – Vendor Defined

	
	Vendor defined area for Upstream items
	

	
	
	
	

	3000 – 3499
	Machine Downstream Process Reason – PreDefined

	3000
	Discharge Not Turned On
	
	

	3001
	Discharge Overload
	
	

	3002
	Discharge Blocked reason
	
	

	3003
	Discharge Cycle Stop reason
	
	

	3004
	Discharge Immediate Stop reason
	
	

	3005 – 3498
	Reserved for future OMAC defined downstream related codes

	
	
	
	

	3499
	Catch All - Unidentified downstream reason
	

	3500 - 3999
	Machine Downstream Process Reason – Vendor Defined

	
	Vendor defined area for downstream items
	

	
	
	
	

	4000 – 4499
	Out Of Service – PreDefined
	

	4000
	Line Not Scheduled
	
	

	4001
	Planned Maintenance
	1
	Maintenance Switch Off Agitator

	
	
	2
	Maintenance Mode

	4002
	Meals and Rest
	
	

	4003
	 Meetings
	
	

	4004
	Training
	
	

	4005
	 No Materials
	
	No Bottles in Front of Filler

	4006
	Remote Stop Requested
	
	

	4007
	Machine Not Selected
	
	

	4008
	Changeover
	
	Change Over Mode

	
	
	
	Change of Media

	4009
	 Lubrication
	
	Grease Lubrication

	4010
	 Product count preset reached
	
	

	4011
	 Setup Selected
	
	

	4012 – 4499
	Reserved for future OMAC defined Out of Service related codes

	4500 - 4999
	Out Of Service – Vendor Defined
	

A.2 Weihenstephan Harmonization
The Weihenstephan standards serve as a basis for an application standard for Production Data Acquisition Systems (PDAS) for, primarily beverage filling systems. The standard describes how PDAS should be constructed in the filling area and how to configure the system in terms of hardware and software. Weihenstephan discusses a standard interface connection for the PDAS as well as control systems. The standard also elaborates on what information will be communicated from the machines to the PDAS. For more information, http://www.wzw.tum.de/lvt/englisch/Weihenstephaner_Standards_GB.html.
The Weihenstephan standard defines a functional programming method consistent with the definition of principles and methods in this report. Due to the nature of the standard, harmonization with the tag details called out in the report can be accomplished as follows:

Parameterized Control Tags

[image: image46.emf]Command. Command. Command. Command.

Parameter[#].ID Parameter[#].Name Parameter[#].Unit Parameter[#].Value

1 30001 WS_Pallet_Type

2 30002 WS_Crate_Type

3 30003 WS_Bottle_Type

4 30004 WS_Beer_Type

5 30005 WS_Outfit_Type

6 30011 WS_Pallet_Pattern

7 30021 WS_Bot_Tank_No

8 00061 Fillingbatch ID Set Low

9 00062 Fillingbatch ID Set High

10 00063 Fillingbatch-ID Current Low

11 00064 Fillingbatch-ID Current High

12 00065 Fillingorder-ID Set Low

13 00066 Fillingorder-ID Set High

14 00067 Fillingorder-ID Current Low

15 00068 Fillingorder-ID Current High

16 00069 SSCC Low

17 00070 SSCC High

Parameterized Status Tags

	
	Status.
	Status.
	Status.
	Status.

	#
	Parameter[#].ID
	Parameter[#].Name
	Parameter[#].Unit
	Parameter [#].Value

	
	
	
	
	

	1
	40001
	WS_Pressure
	
	

	2
	40002
	WS_Temperature
	
	

	3
	40003
	WS_Vol_Flow
	
	

	4
	40004
	WS_PU
	
	

	5
	40005
	WS_Conductance
	
	

	6
	40011
	
	

	7
	40012
	WS_Redox_Hot_Water
	

	8
	40021
	WS_Temp_Main_Caustic
	

	9
	40022
	WS_Cond_Main_Caustic
	

	10
	40031
	WS_Temp_Caus_Spray
	

	11
	40032
	WS_Caus_Caus_Spray
	

	12
	40041
	WS_Press_Jet_Zone_XX
	

	13
	40042
	WS_Press_Jet_Zone_XX
	

	14
	40043
	WS_Press_Jet_Zone_XX
	

	15
	40044
	WS_Press_Jet_Zone_XX
	

	16
	40045
	WS_Press_Jet_Zone_XX
	

	17
	40046
	WS_Press_Jet_Zone_XX
	

	18
	40047
	WS_Temp_Hot_Water
	

	19
	40048
	WS_Press_Jet_Zone_XX
	

	20
	40049
	WS_Press_Jet_Zone_XX
	

	21
	40050
	WS_Press_Jet_Zone_XX
	

	22
	40051
	WS_Press_Bottling
	
	

	23
	40052
	WS_Temp_Bottling
	
	

	24
	40061
	WS_Press_HPI
	
	

	25
	40062
	WS_Temp_HPI
	
	

	26
	40071
	WS_Temp_Flod_Water
	

	27
	40081
	WS_Temp_Product
	
	

	28
	40082
	WS_Cond_Product
	
	

	29
	40083
	WS_PH_Product
	
	

	30
	40084
	WS_O2_Product
	
	

	31
	40085
	WS_CO2_Product
	
	

	32
	40086
	WS_Extr_Product
	
	

	33
	40091
	WS_Temp_Runback
	

	34
	40092
	WS_Cond_Runback
	
	

	35
	40101
	WS_Temp_Steril
	
	

	36
	40111
	WS_Vol_Flow_Det
	
	

	37
	40121
	WS_O_Press_Cleanroom
	

	38
	40131
	WS_Fill_Factor
	
	

	39
	40141
	WS_Temp_Glue
	
	

	40
	40151
	WS_Temp_Past_Zone_XX
	

	41
	40152
	WS_Temp_Past_Zone_XX
	

	42
	40153
	WS_Temp_Past_Zone_XX
	

	43
	40154
	WS_Temp_Past_Zone_XX
	

	44
	40155
	WS_Temp_Past_Zone_XX
	

	45
	40156
	WS_Temp_Past_Zone_XX
	

	46
	40157
	WS_Temp_Past_Zone_XX
	

	47
	40158
	WS_Temp_Past_Zone_XX
	

	48
	40159
	WS_Temp_Past_Zone_XX
	

	49
	40160
	WS_Temp_Past_Zone_XX
	

	50
	40161
	WS_Temp_Past_Zone_XX
	

	51
	40162
	WS_Temp_Past_Zone_XX
	

	52
	40163
	WS_Temp_Past_Zone_XX
	

	53
	40164
	WS_Temp_Past_Zone_XX
	

	54
	40165
	WS_Temp_Past_Zone_XX
	

	55
	40166
	WS_Temp_Past_Zone_XX
	

	56
	40167
	WS_Temp_Past_Zone_XX
	

	57
	40168
	WS_Temp_Past_Zone_XX
	

	58
	40169
	WS_Temp_Past_Zone_XX
	

	59
	40170
	WS_Temp_Past_Zone_XX
	

	60
	40171
	WS_Spd_Conveyor
	
	

	61
	40181
	WS_Freq_Freq_Conv_XX
	

	62
	40182
	WS_Freq_Freq_Conv_XX
	

	63
	40183
	WS_Freq_Freq_Conv_XX
	

	64
	40184
	WS_Freq_Freq_Conv_XX
	

	65
	40185
	WS_Freq_Freq_Conv_XX
	

	66
	40186
	WS_Freq_Freq_Conv_XX
	

	67
	40187
	WS_Freq_Freq_Conv_XX
	

	68
	40188
	WS_Freq_Freq_Conv_XX
	

	69
	40189
	WS_Freq_Freq_Conv_XX
	

	70
	40190
	WS_Freq_Freq_Conv_XX
	

	71
	40191
	WS_Freq_Freq_Conv_XX
	

	72
	40192
	WS_Freq_Freq_Conv_XX
	

	73
	40193
	WS_Freq_Freq_Conv_XX
	

	74
	40194
	WS_Freq_Freq_Conv_XX
	

	75
	40195
	WS_Freq_Freq_Conv_XX
	

	76
	40196
	WS_Freq_Freq_Conv_XX
	

	77
	40197
	WS_Freq_Freq_Conv_XX
	

	78
	40198
	WS_Freq_Freq_Conv_XX
	

	79
	40199
	WS_Freq_Freq_Conv_XX
	

	80
	40200
	WS_Freq_Freq_Conv_XX
	

	81
	40201
	WS_Freq_Freq_Conv_XX
	

	82
	40202
	WS_Freq_Freq_Conv_XX
	

	83
	40203
	WS_Freq_Freq_Conv_XX
	

	84
	40204
	WS_Freq_Freq_Conv_XX
	

	85
	40205
	WS_Freq_Freq_Conv_XX
	

	86
	40206
	WS_Freq_Freq_Conv_XX
	

	87
	40207
	WS_Freq_Freq_Conv_XX
	

	88
	40208
	WS_Freq_Freq_Conv_XX
	

	89
	40209
	WS_Freq_Freq_Conv_XX
	

	90
	40210
	WS_Freq_Freq_Conv_XX
	

	91
	40211
	WS_Freq_Freq_Conv_XX
	

	92
	40212
	WS_Freq_Freq_Conv_XX
	

	93
	40213
	WS_Freq_Freq_Conv_XX
	

	94
	40214
	WS_Freq_Freq_Conv_XX
	

	95
	40215
	WS_Freq_Freq_Conv_XX
	

	96
	40216
	WS_Freq_Freq_Conv_XX
	

	97
	40217
	WS_Freq_Freq_Conv_XX
	

	98
	40218
	WS_Freq_Freq_Conv_XX
	

	99
	40219
	WS_Freq_Freq_Conv_XX
	

	100
	40220
	WS_Freq_Freq_Conv_XX
	

	101
	40221
	WS_Freq_Freq_Conv_XX
	

	102
	40222
	WS_Freq_Freq_Conv_XX
	

	103
	40223
	WS_Freq_Freq_Conv_XX
	

	104
	40224
	WS_Freq_Freq_Conv_XX
	

	105
	40225
	WS_Freq_Freq_Conv_XX
	

	106
	40226
	WS_Freq_Freq_Conv_XX
	

	107
	40227
	WS_Freq_Freq_Conv_XX
	

	108
	40228
	WS_Freq_Freq_Conv_XX
	

	109
	40229
	WS_Freq_Freq_Conv_XX
	

	110
	40230
	WS_Freq_Freq_Conv_XX
	

	111
	40231
	WS_Spd_Freq_Conv_XX
	

	112
	40232
	WS_Spd_Freq_Conv_XX
	

	113
	40233
	WS_Spd_Freq_Conv_XX
	

	114
	40234
	WS_Spd_Freq_Conv_XX
	

	115
	40235
	WS_Spd_Freq_Conv_XX
	

	116
	40236
	WS_Spd_Freq_Conv_XX
	

	117
	40237
	WS_Spd_Freq_Conv_XX
	

	118
	40238
	WS_Spd_Freq_Conv_XX
	

	119
	40239
	WS_Spd_Freq_Conv_XX
	

	120
	40240
	WS_Spd_Freq_Conv_XX
	

	121
	40241
	WS_Spd_Freq_Conv_XX
	

	122
	40242
	WS_Spd_Freq_Conv_XX
	

	123
	40243
	WS_Spd_Freq_Conv_XX
	

	124
	40244
	WS_Spd_Freq_Conv_XX
	

	125
	40245
	WS_Spd_Freq_Conv_XX
	

	126
	40246
	WS_Spd_Freq_Conv_XX
	

	127
	40247
	WS_Spd_Freq_Conv_XX
	

	128
	40248
	WS_Spd_Freq_Conv_XX
	

	129
	40249
	WS_Spd_Freq_Conv_XX
	

	130
	40250
	WS_Spd_Freq_Conv_XX
	

	131
	40251
	WS_Spd_Freq_Conv_XX
	

	132
	40252
	WS_Spd_Freq_Conv_XX
	

	133
	40253
	WS_Spd_Freq_Conv_XX
	

	134
	40254
	WS_Spd_Freq_Conv_XX
	

	135
	40255
	WS_Spd_Freq_Conv_XX
	

	136
	40256
	WS_Spd_Freq_Conv_XX
	

	137
	40257
	WS_Spd_Freq_Conv_XX
	

	138
	40258
	WS_Spd_Freq_Conv_XX
	

	139
	40259
	WS_Spd_Freq_Conv_XX
	

	140
	40260
	WS_Spd_Freq_Conv_XX
	

	141
	40261
	WS_Spd_Freq_Conv_XX
	

	142
	40262
	WS_Spd_Freq_Conv_XX
	

	143
	40263
	WS_Spd_Freq_Conv_XX
	

	144
	40264
	WS_Spd_Freq_Conv_XX
	

	145
	40265
	WS_Spd_Freq_Conv_XX
	

	146
	40266
	WS_Spd_Freq_Conv_XX
	

	147
	40267
	WS_Spd_Freq_Conv_XX
	

	148
	40268
	WS_Spd_Freq_Conv_XX
	

	149
	40269
	WS_Spd_Freq_Conv_XX
	

	150
	40270
	WS_Spd_Freq_Conv_XX
	

	151
	40271
	WS_Spd_Freq_Conv_XX
	

	152
	40272
	WS_Spd_Freq_Conv_XX
	

	153
	40273
	WS_Spd_Freq_Conv_XX
	

	154
	40274
	WS_Spd_Freq_Conv_XX
	

	155
	40275
	WS_Spd_Freq_Conv_XX
	

	156
	40276
	WS_Spd_Freq_Conv_XX
	

	157
	40277
	WS_Spd_Freq_Conv_XX
	

	158
	40278
	WS_Spd_Freq_Conv_XX
	

	159
	40279
	WS_Spd_Freq_Conv_XX
	

	160
	40280
	WS_Spd_Freq_Conv_XX
	

	
	
	
	

 Parameterized Adminstration Tags

	
	Admin.
	Admin.
	Admin.
	Admin.

	#
	Parameter[#].ID
	Parameter[#].Name
	Parameter[#].Unit
	Parameter[#].Value

	
	
	
	
	

	1
	50001
	WS_Tot_Pallets
	
	

	2
	50002
	WS_Tot_Crates
	
	

	3
	50003
	WS_Tot_Crates_Full
	
	

	4
	50004
	WS_Tot_Crates_Empty
	
	

	5
	50005
	WS_Tot_Bottles
	
	

	6
	50006
	WS_Good_Bottles
	
	

	7
	50007
	WS_Dis_Bott_Cont
	
	

	8
	50008
	WS_Dis_Bott_Return
	
	

	9
	50009
	WS_Burst_Bottles
	
	

	10
	50010
	WS_Label
	
	

	11
	50011
	WS_Tot_Rej
	
	

	12
	50012
	WS_Rej_Wrong_Bottle
	
	

	13
	50013
	WS_Rej_Bottle_High
	
	

	14
	50014
	WS_Rej_Bottle_Low
	
	

	15
	50015
	WS_Rej_Bottle_Colour
	
	

	16
	50016
	WS_Rej_Def_Opening
	
	

	17
	50017
	WS_Rej_Def_Botton
	
	

	18
	50018
	WS_Rej_Scuffing
	
	

	19
	50019
	WS_Rej_Bottle_Closed
	
	

	20
	50020
	WS_Rej_Caustic
	
	

	21
	50021
	WS_Rej_Foreign_Obj
	
	

	22
	50022
	WS_Rej_Bottle_Under
	
	

	23
	50023
	WS_Rej_Bottle_Over
	
	

	24
	50024
	WS_Rej_Bottle_Clos
	
	

	25
	50025
	WS_Rej_Date_Coding
	
	

	26
	50026
	WS_Rej_Label_Fault
	
	

	27
	50027
	WS_Rej_Crate_Defect
	
	

	28
	50028
	WS_Rej_Crate_Colour
	
	

	29
	50029
	WS_Rej_Crate_Logo
	
	

	30
	50030
	WS_Rej_Comp_Empty
	
	

	31-100
	50031-50100
	OTHER REJECT CAUSES
	
	

	101
	50101
	WS_Cons_Clean_Water
	
	

	102
	50102
	WS_Cons_Hot_Water
	
	

	103
	50103
	WS_Cons_Steam
	
	

	104
	50104
	WS_Cons_Sterile_Air
	
	

	105
	50105
	WS_Cons_CO2
	
	

	106
	50106
	WS_Cons_Detergents
	
	

	107
	50107
	WS_Cons_Additives
	
	

	108
	50108
	WS_Cons_Lubricant
	
	

	109-150
	50109-50150
	OTHER CONSUMPTIONS
	
	

	151
	50151
	WS_Tot_Crates_Bad
	
	

	152
	50152
	WS_Bad_Cr_Miss_Bott
	
	

	153
	50153
	WS_Bad_Cr_High_Bott
	
	

	154
	50154
	WS_Bad_Cr_Low_Bott
	
	

	155
	50155
	WS_Bad_Cr_Colour
	
	

	156
	50156
	WS_Bad_Cr_Def_Handle
	
	

	157-200
	50157-50200
	OTHER REASONS BAD CRATES
	
	

	201
	50201
	WS_Pallets_Not_Comp
	
	

	202
	50202
	WS_Def_Pallets
	
	

	203
	50203
	WS_Not_Def_Pallets
	
	

	204
	50211
	WS_Quantity_Product
	
	

	205
	50212
	WS_Prod_Flow_Rate
	
	

	206-905
	50301-50999
	WS_Fill_Valve_XXX_YYY
	
	

Producing Mode

 State Functions

Mode Management

Resetting Function

Starting Function

Aborting Function

Clearing Function

Unsuspending Function

Completing Function

Unholding Function

Suspending Function

Execute Function

Holding Function

Stopping Function

Producing Mode

Maintenance Mode

Manual Mode

Suspended Function

Idle Function

Held Function

Complete Function

Stopped Function

Aborted Function

Aborted Function

Stopped Function

Manual Mode

Producing Mode

Idle Function

Manual Mode

Maintenance Mode

Producing Mode

Stopping Function

Maintenance Mode

Execute Function

Clearing Function

Aborting Function

Starting Function

Resetting Function

Manual Mode

State Functions

Mode Management

Mode Management

� Term “Procedural Element” defined (ANSI/ISA 88.01)

� A “major processing activity” corresponds to the term “Equipment Operation” as defined in ANSI/ISA 88.01

� Tags not required for the function of the automated machine or the connectivity to supervisory or remote systems are not required.

� Each grouping of data should be in a contiguous grouping of registers to optimise communications.

PAGE

[image: image47.emf][image: image48.emf][image: image49.png]GNHOLOING - un-soia —

le—sc—oioms

.

s [

_f

; [— —
AN o, :
y y

[image: image50.png](oL OIG a-un-tors —

le—sc—1

I

—

_f

3
!
T T
Resot stop §
|) r

[image: image51.png]Maintenance Mode
State Functions

Resetting Function

Starting Function

Execute Function

Holding Function

Unholding Function

Aborting Function

Clearing Function

Stopping Function

Stopped Function

Held Function

Idle Function

Aborted Function

[image: image52.png]T
]
i
siop T
3 3
stomen - {e—sc——Sicamiis e Aponten: Le—sc— 1 Kaanng

_1265434034.unknown

_1266428135.unknown

_1266428487.unknown

_1266427873.unknown

_1264489135.vsd
Total Time

Planned Maintenance

Curtailment

Planned Production Time

Changeover Mode

Cleaning

Unplanned Maintenance

Operating Time

Breakdowns

Availability =

Operating Time/ Planned Production Time

Small Stops

Reduced Speed

Performance

 = Total Pieces / (Operating Time * Ideal Run Rate)

Processed Parts Time Credit

Startup Rejects

Production Rejects

Good Parts Time Credit

Quality

 = Good Parts / Processed Parts

Typical OEE Waterfall Object

_1249308930.xls
State Mode

		

		Modified from Robert Freller's (Siemens) comparison document

								OMAC V2				OMAC V3										Weihenstephan 2005

														Unit Mode										Program

												0		Undefined								0		Undefined

												1		Production								1		Production

												2		Maintenance								2		Startup

												3		Manual								4		RunDown		? Should be complete state ?

												4		Semi-Automatic								8		Clean

												5		DryRun								16		Changeover

												6		User Mode								32		Maintenance

												7		User Mode								64		Break

												…..		User Mode

								Value		Mode				Procedural Modes								Value		Mode

								0		Undefined		0		Undefined								1		OFF

								1		Automatic		1		Automatic								2		Manual

								2		Semi-Automatic		2		Semi-Automatic								4		Semi-Automatic

								3		Manual		3		Manual								8		Automatic

								4		Idle

								Value		State												Value		State

										PACKML V2.0				PACKMLV3.0										Weihenstephan 2005

								0		undefined		0		Undefined								1		Stopped		OMAC State "Stopped"						+		ReasonCode		33-64		(operatorAction or Completed)

								1		“Off”		1		“Clearing”								2		Starting

								2		“Stopped”		2		“Stopped”								4		Prepared

								3		“Starting”		3		“Starting”								8		Lack		OMAC State "Suspended"						+		ReasonCode		2000-2999

								4		“Ready”		4		“Idle”								16		Tailback		OMAC State "Suspended"						+		ReasonCode		3000-3999

								5		“Standby”		5		“Suspended”								32		Lack Branch Line		OMAC State "Suspended"						+		ReasonCode		2000-2999

								6		“Producing”		6		“Execute”								64		Tailback Branch Line		OMAC State "Suspended"						+		ReasonCode		3000-3999

								7		“Stopping”		7		“Stopping”								128		Operating

								8		“Aborting”		8		“Aborting”								256		Stopping

								9		“Aborted”		9		“Aborted”								512		Aborting

								10		“Holding”		10		“Holding”								1024		Equipment Failure		OMAC State "Aborted"						+		ReasonCode		65-512		(excluded E-Stop faults)

								11		“Held”		11		“Held”								2048		External Failure		OMAC State "Aborted"						+		ReasonCode		2000- 3999

												12		“UnHolding”								4096		Emergency Stop		OMAC State "Aborted"						+		ReasonCode		1-32

												13		“Suspending”								8192		Holding

												14		“Unsuspending”								16384		Held

												15		“Resetting”

												16		“Completing”

												17		“Complete”

																																						Program = Production

																																						Program = Startup/Warmup

																																						Program = Clean

																																						Program = Maintenance

&A

&F

PML WS Tags

		PackTags V2 / Weihenstephan Command Tags		Req.						PackTags V3.0 Command Tags (R/W)								Datatype

								PMLc										Unitname

		WS_Cur_Program *		Yes						UnitMode								Int (32bit)

										UnitModeChangeRequest								Bool

		WS_Cur_Mode *								ProcMode								Int (32bit)

										ProcModeChangeRequest								Bool

		WS_Set_Mach_Spd		Yes						CurMachSpeed								Int (32bit)

		WS_Mat_Ready *								MatReady								Materials

												RawMaterial						Bool

												CO2						Bool

												Container						Bool

												Lubrication						Bool

												Water						Bool

												ContainerClosures						Bool

												10 more Unused						Bool

		WS_Mat_Low *								MatLow								Materials

												RawMaterial						Bool

												CO2						Bool

												Container						Bool

												Lubrication						Bool

												Water						Bool

												ContainerClosures						Bool

												10 more Unused						Bool

		WS_Cur_State *		Yes						State								Int (32bit)

		PML_Trans_Trigger								StateChangeRequest								Bool

		PML_Cntrl_Cmd		Yes						CntrlCmd								Int (32bit)

										Node[#]								Node

												Number						Int (32bit)

												ControlCmdNumber						Int (32bit)

												CmdValue						Int (32bit)

												Parameter[#]						Descriptor

														ID				Int (32bit)

														Name				String

														Unit				String

														Value				Real

										ProcessVariables[#]								Descriptor

												ID						Int (32bit)

												Name						String

												Unit						String

												Value						Real

										Product[#]								Product

												ProductID						Int (32bit)

												ProcessVariables[#]						Descriptor

														ID				Int (32bit)

														Name				String

														Unit				String

														Value				Real

												Ingredients[#]						Ingredient

														IngredientID				Int (32bit)

														Parameter[#]				Descriptor

																ID		Int (32bit)

																Name		String

																Unit		String

																Value		Real

										Limits[#]								Descriptor

												ID						Int (32bit)

												Name						String

												Unit						String

												Value						Real

										TargetDownstreamNodeID								Int (32bit)

										TargetUpstreamNodeID								Int (32bit)

										ChangeNodeServicedUpstream								Int (32bit)

										ChangeNodeServicedDownstream								Int (32bit)

		PackTags V2.0 Weihenstephan Information Tags		Req.						PackTags V3.0 Status Tags (Read)								Datatype

								PMLs										Unitname

										CommandRejected								Bool

		WS_Cur_Program *								UnitModeCurrent								Int (32bit)

										UnitModeRequested								Int (32bit)

										UnitModeChangeInProcess								Bool

		WS_Cur_Mode *								ProcModeCurrent								Int (32bit)

										ProcModeRequested								Int (32bit)

										ProcModeChangeInProcess								Bool

		WS_Cur_State *								StateCurrent								Int (32bit)

										StateRequested								Int (32bit)

										StateChangeInProcess								Bool

										StateChangeProgress								Int (32bit)

										StateLastCompleted								Int (32bit)

		WS_Program_Step								SeqNumber								Int (32bit)

		WS_Cur_Mach_Spd								CurMachspd								Int (32bit)

		WS_Mat_Ready *								MatReady								Materials

												RawMaterial						Bool

												CO2						Bool

												Container						Bool

												Lubrication						Bool

												Water						Bool

												ContainerClosures						Bool

												10x Unused						Bool

		WS_Mat_Low *								MatLow								Materials

												RawMaterial						Bool

												CO2						Bool

												Container						Bool

												Lubrication						Bool

												Water						Bool

												ContainerClosures						Bool

												10x Unused						Bool

		WS_Mach_Design_Spd								MachDesignSpeed								Real

		WS_Mach_Cycle								MachCycle								Int (32bit)

		WS_Prod_Ratio								ProdRatio								Int (32bit)

										Dirty								Bool

										Clean								Bool

										TimeToDirty								Int (32bit)

										EquipmentAllocatedToUnitModeID								Int (32bit)

										MachineReusableForUnitModeID								Int (32bit)

										MachineReusableTimeLeft								Int (32bit)

										MachineStoringProductID								Int (32bit)

										MachineTransferringProductID								Int (32bit)

										Node[#]								Node

												Number						Int (32bit)

												ControlCmdNumber						Int (32bit)

												CmdValue						Int (32bit)

												Parameter[#]						Descriptor

														ID				Int (32bit)

														Name				String

														Unit				String

														Value				Real

										ProcessVariables[#]								Descriptor

												ID						Int (32bit)

												Name						String

												Unit						String

												Value						Real

										Product[#]								Product

												ProductID						Int (32bit)

												ProcessVariables[#]						Descriptor

														ID				Int (32bit)

														Name				String

														Unit				String

														Value				Real

												Ingredients[#]						Ingredient

														IngredientID				Int (32bit)

														Parameter[#]				Descriptor

																ID		Int (32bit)

																Name		String

																Unit		String

																Value		Real

										Limits[#]								Descriptor

												ID						Int (32bit)

												Name						String

												Unit						String

												Value						Real

		PackTags V2.0 Weihenstephan Information Tags		Req.						PackTags V3.0 Administration Tags (Read)								Datatype

								PMLa										Unitname

										Alarm[#]								Alarm

		WS_Not_Of_Fail_Code		Yes								ID						Int (32bit)

		PML_Reason_Index										Value						Int (32bit)

		PML_Reason_Text		Yes								Message						String

		PML_Reason_Code_Supp										TimeEvent						TimeStamp

														Year				Int (32bit)

														Month				Int (32bit)

														Day				Int (32bit)

														Hour				Int (32bit)

														Min				Int (32bit)

														Sec				Int (32bit)

														mSec				Int (32bit)

												TimeAck						TimeStamp

														Year				Int (32bit)

														Month				Int (32bit)

														Day				Int (32bit)

														Hour				Int (32bit)

														Min				Int (32bit)

														Sec				Int (32bit)

														mSec				Int (32bit)

		PML_Mode_Time		Yes						ModeCurrentTime[#]								Int (32bit)

		PML_Cum_Time_Modes								ModeCummulativeTime[#]								Int (32bit)

		PML_State_Time		Yes						StateCurrentTime[#,#] (Mode,State)								Int (32bit)

		PML_Cum_Time_States								StateCummulativeTime[#,#] (Mode,State)								Int (32bit)

		PML_Prod_Processed		Yes						ProdProcessed								Int (32bit)

		PML_Defect_Prod								DefectProd								Int (32bit)

		PML_Rework_Prod								ReworkProd								Int (32bit)

		PML_Reset		Yes						ResetTimersCounters								Bool

										UpstreamMessage								Int (32bit)

										DownStreamMessage								Int (32bit)

										CurrentDownstreamNodeID[#]								Int (32bit)

										CurrentUpstreamNodeID[#]								Int (32bit)

WS PMLc

				Command.		Command.		Command.		Command.

		#		Parameter[#].ID		Parameter[#].Name		Parameter[#].Unit		Parameter[#].Value

		1		30001		WS_Pallet_Type

		2		30002		WS_Crate_Type

		3		30003		WS_Bottle_Type

		4		30004		WS_Beer_Type

		5		30005		WS_Outfit_Type

		6		30011		WS_Pallet_Pattern

		7		30021		WS_Bot_Tank_No

		8		00061		Fillingbatch ID Set Low

		9		00062		Fillingbatch ID Set High

		10		00063		Fillingbatch-ID Current Low

		11		00064		Fillingbatch-ID Current High

		12		00065		Fillingorder-ID Set Low

		13		00066		Fillingorder-ID Set High

		14		00067		Fillingorder-ID Current Low

		15		00068		Fillingorder-ID Current High

		16		00069		SSCC Low

		17		00070		SSCC High

WS PMLs

				PMLs.		PMLs.		PMLs.		PMLs.

		#		ProcessVariable[#].ID		ProcessVarible[#].Name		ProcessVariable[#].Unit		ProcessVariable[#].Value

		1		40001		WS_Pressure

		2		40002		WS_Temperature								PointerCode

		3		40003		WS_Vol_Flow

		4		40004		WS_PU

		5		40005		WS_Conductance

		6		40011		WS_Temp_Hot_Water

		7		40012		WS_Redox_Hot_Water

		8		40021		WS_Temp_Main_Caus

		9		40022		WS_Cond_Main_Caus

		10		40031		WS_Temp_Caus_Spray

		11		40032		WS_Caus_Caus_Spray

		12		40041		WS_Press_Jet_Zone_XX

		13		40042		WS_Press_Jet_Zone_XX

		14		40043		WS_Press_Jet_Zone_XX

		15		40044		WS_Press_Jet_Zone_XX

		16		40045		WS_Press_Jet_Zone_XX

		17		40046		WS_Press_Jet_Zone_XX

		18		40047		WS_Press_Jet_Zone_XX

		19		40048		WS_Press_Jet_Zone_XX

		20		40049		WS_Press_Jet_Zone_XX

		21		40050		WS_Press_Jet_Zone_XX

		22		40051		WS_Press_Bottling

		23		40052		WS_Temp_Bottling

		24		40061		WS_Press_HPI

		25		40062		WS_Temp_HPI

		26		40071		WS_Temp_Flod_Water

		27		40081		WS_Temp_Product

		28		40082		WS_Cond_Product

		29		40083		WS_PH_Product

		30		40084		WS_O2_Product

		31		40085		WS_CO2_Product

		32		40086		WS_Extr_Product

		33		40091		WS_Temp_Runback

		34		40092		WS_Cond_Runback

		35		40101		WS_Temp_Steril

		36		40111		WS_Vol_Flow_Det

		37		40121		WS_O_Press_Cleanroom

		38		40131		WS_Fill_Factor

		39		40141		WS_Temp_Glue

		40		40151		WS_Temp_Past_Zone_XX

		41		40152		WS_Temp_Past_Zone_XX

		42		40153		WS_Temp_Past_Zone_XX

		43		40154		WS_Temp_Past_Zone_XX

		44		40155		WS_Temp_Past_Zone_XX

		45		40156		WS_Temp_Past_Zone_XX

		46		40157		WS_Temp_Past_Zone_XX

		47		40158		WS_Temp_Past_Zone_XX

		48		40159		WS_Temp_Past_Zone_XX

		49		40160		WS_Temp_Past_Zone_XX

		50		40161		WS_Temp_Past_Zone_XX

		51		40162		WS_Temp_Past_Zone_XX

		52		40163		WS_Temp_Past_Zone_XX

		53		40164		WS_Temp_Past_Zone_XX

		54		40165		WS_Temp_Past_Zone_XX

		55		40166		WS_Temp_Past_Zone_XX

		56		40167		WS_Temp_Past_Zone_XX

		57		40168		WS_Temp_Past_Zone_XX

		58		40169		WS_Temp_Past_Zone_XX

		59		40170		WS_Temp_Past_Zone_XX

		60		40171		WS_Spd_Conveyor

		61		40181		WS_Freq_Freq_Conv_XX

		62		40182		WS_Freq_Freq_Conv_XX

		63		40183		WS_Freq_Freq_Conv_XX

		64		40184		WS_Freq_Freq_Conv_XX

		65		40185		WS_Freq_Freq_Conv_XX

		66		40186		WS_Freq_Freq_Conv_XX

		67		40187		WS_Freq_Freq_Conv_XX

		68		40188		WS_Freq_Freq_Conv_XX

		69		40189		WS_Freq_Freq_Conv_XX

		70		40190		WS_Freq_Freq_Conv_XX

		71		40191		WS_Freq_Freq_Conv_XX

		72		40192		WS_Freq_Freq_Conv_XX

		73		40193		WS_Freq_Freq_Conv_XX

		74		40194		WS_Freq_Freq_Conv_XX

		75		40195		WS_Freq_Freq_Conv_XX

		76		40196		WS_Freq_Freq_Conv_XX

		77		40197		WS_Freq_Freq_Conv_XX

		78		40198		WS_Freq_Freq_Conv_XX

		79		40199		WS_Freq_Freq_Conv_XX

		80		40200		WS_Freq_Freq_Conv_XX

		81		40201		WS_Freq_Freq_Conv_XX

		82		40202		WS_Freq_Freq_Conv_XX

		83		40203		WS_Freq_Freq_Conv_XX

		84		40204		WS_Freq_Freq_Conv_XX

		85		40205		WS_Freq_Freq_Conv_XX

		86		40206		WS_Freq_Freq_Conv_XX

		87		40207		WS_Freq_Freq_Conv_XX

		88		40208		WS_Freq_Freq_Conv_XX

		89		40209		WS_Freq_Freq_Conv_XX

		90		40210		WS_Freq_Freq_Conv_XX

		91		40211		WS_Freq_Freq_Conv_XX

		92		40212		WS_Freq_Freq_Conv_XX

		93		40213		WS_Freq_Freq_Conv_XX

		94		40214		WS_Freq_Freq_Conv_XX

		95		40215		WS_Freq_Freq_Conv_XX

		96		40216		WS_Freq_Freq_Conv_XX

		97		40217		WS_Freq_Freq_Conv_XX

		98		40218		WS_Freq_Freq_Conv_XX

		99		40219		WS_Freq_Freq_Conv_XX

		100		40220		WS_Freq_Freq_Conv_XX

		101		40221		WS_Freq_Freq_Conv_XX

		102		40222		WS_Freq_Freq_Conv_XX

		103		40223		WS_Freq_Freq_Conv_XX

		104		40224		WS_Freq_Freq_Conv_XX

		105		40225		WS_Freq_Freq_Conv_XX

		106		40226		WS_Freq_Freq_Conv_XX

		107		40227		WS_Freq_Freq_Conv_XX

		108		40228		WS_Freq_Freq_Conv_XX

		109		40229		WS_Freq_Freq_Conv_XX

		110		40230		WS_Freq_Freq_Conv_XX

		111		40231		WS_Spd_Freq_Conv_XX

		112		40232		WS_Spd_Freq_Conv_XX

		113		40233		WS_Spd_Freq_Conv_XX

		114		40234		WS_Spd_Freq_Conv_XX

		115		40235		WS_Spd_Freq_Conv_XX

		116		40236		WS_Spd_Freq_Conv_XX

		117		40237		WS_Spd_Freq_Conv_XX

		118		40238		WS_Spd_Freq_Conv_XX

		119		40239		WS_Spd_Freq_Conv_XX

		120		40240		WS_Spd_Freq_Conv_XX

		121		40241		WS_Spd_Freq_Conv_XX

		122		40242		WS_Spd_Freq_Conv_XX

		123		40243		WS_Spd_Freq_Conv_XX

		124		40244		WS_Spd_Freq_Conv_XX

		125		40245		WS_Spd_Freq_Conv_XX

		126		40246		WS_Spd_Freq_Conv_XX

		127		40247		WS_Spd_Freq_Conv_XX

		128		40248		WS_Spd_Freq_Conv_XX

		129		40249		WS_Spd_Freq_Conv_XX

		130		40250		WS_Spd_Freq_Conv_XX

		131		40251		WS_Spd_Freq_Conv_XX

		132		40252		WS_Spd_Freq_Conv_XX

		133		40253		WS_Spd_Freq_Conv_XX

		134		40254		WS_Spd_Freq_Conv_XX

		135		40255		WS_Spd_Freq_Conv_XX

		136		40256		WS_Spd_Freq_Conv_XX

		137		40257		WS_Spd_Freq_Conv_XX

		138		40258		WS_Spd_Freq_Conv_XX

		139		40259		WS_Spd_Freq_Conv_XX

		140		40260		WS_Spd_Freq_Conv_XX

		141		40261		WS_Spd_Freq_Conv_XX

		142		40262		WS_Spd_Freq_Conv_XX

		143		40263		WS_Spd_Freq_Conv_XX

		144		40264		WS_Spd_Freq_Conv_XX

		145		40265		WS_Spd_Freq_Conv_XX

		146		40266		WS_Spd_Freq_Conv_XX

		147		40267		WS_Spd_Freq_Conv_XX

		148		40268		WS_Spd_Freq_Conv_XX

		149		40269		WS_Spd_Freq_Conv_XX

		150		40270		WS_Spd_Freq_Conv_XX

		151		40271		WS_Spd_Freq_Conv_XX

		152		40272		WS_Spd_Freq_Conv_XX

		153		40273		WS_Spd_Freq_Conv_XX

		154		40274		WS_Spd_Freq_Conv_XX

		155		40275		WS_Spd_Freq_Conv_XX

		156		40276		WS_Spd_Freq_Conv_XX

		157		40277		WS_Spd_Freq_Conv_XX

		158		40278		WS_Spd_Freq_Conv_XX

		159		40279		WS_Spd_Freq_Conv_XX

		160		40280		WS_Spd_Freq_Conv_XX

WS PMLa

				PMLa.		PMLa.		PMLa.		PMLa.

		#		ProcessVariable[#].ID		ProcessVarible[#].Name		ProcessVariable[#].Unit		ProcessVariable[#].Value

														All are Undefined in PackTags V3

		1		50001		WS_Tot_Pallets								All are DINT Datatype

		2		50002		WS_Tot_Crates

		3		50003		WS_Tot_Crates_Full								TimeStamp ?

		4		50004		WS_Tot_Crates_Empty

		5		50005		WS_Tot_Bottles

		6		50006		WS_Good_Bottles

		7		50007		WS_Dis_Bott_Cont

		8		50008		WS_Dis_Bott_Return

		9		50009		WS_Burst_Bottles

		10		50010		WS_Label

		11		50011		WS_Tot_Rej

		12		50012		WS_Rej_Wrong_Bottle

		13		50013		WS_Rej_Bottle_High

		14		50014		WS_Rej_Bottle_Low

		15		50015		WS_Rej_Bottle_Colour

		16		50016		WS_Rej_Def_Opening

		17		50017		WS_Rej_Def_Botton

		18		50018		WS_Rej_Scuffing

		19		50019		WS_Rej_Bottle_Closed

		20		50020		WS_Rej_Caustic

		21		50021		WS_Rej_Foreign_Obj

		22		50022		WS_Rej_Bottle_Under

		23		50023		WS_Rej_Bottle_Over

		24		50024		WS_Rej_Bottle_Clos

		25		50025		WS_Rej_Date_Coding

		26		50026		WS_Rej_Label_Fault

		27		50027		WS_Rej_Crate_Defect

		28		50028		WS_Rej_Crate_Colour

		29		50029		WS_Rej_Crate_Logo

		30		50030		WS_Rej_Comp_Empty

		31-100		50031-50100		OTHER REJECT CAUSES

		101		50101		WS_Cons_Clean_Water

		102		50102		WS_Cons_Hot_Water

		103		50103		WS_Cons_Steam

		104		50104		WS_Cons_Sterile_Air

		105		50105		WS_Cons_CO2

		106		50106		WS_Cons_Detergents

		107		50107		WS_Cons_Additives

		108		50108		WS_Cons_Lubricant

		109-150		50109-50150		OTHER CONSUMPTIONS

		151		50151		WS_Tot_Crates_Bad

		152		50152		WS_Bad_Cr_Miss_Bott

		153		50153		WS_Bad_Cr_High_Bott

		154		50154		WS_Bad_Cr_Low_Bott

		155		50155		WS_Bad_Cr_Colour

		156		50156		WS_Bad_Cr_Def_Handle

		157-200		50157-50200		OTHER REASONS BAD CRATES

		201		50201		WS_Pallets_Not_Comp

		202		50202		WS_Def_Pallets

		203		50203		WS_Not_Def_Pallets

		204		50211		WS_Quantity_Product

		205		50212		WS_Prod_Flow_Rate

		206-905		50301-50999		WS_Fill_Valve_XXX_YYY

State Model - Automatic Mode

To ABORTING From PRODUCING

To STOPPING

Weihenstephan State Model — all Operating Modes — all Programs

to Aborting from Operating

to Stapping

from Stopping

- Transitens

Stopping

Holding

Held

Stopped Aborting Aborted

Start

SC

SC

SC

SC

Starting

Un-Suspending

Stop

Abort

SC

Prepared, Lack, Tailback, etc.

Operating

Suspended Suspending

Stopping

Execute

Resetting

Holding

Held

Stopped Aborting Aborted

SC

Start

SC

SC

SC

Idle

Un-Hold Un-Holding

SC

Complete

SC

Clearing

Starting

Suspending

Un-Suspending

SC

Un-Suspend

SC

Suspended

Completing

Suspend

Hold

SC

Stop

Clear

Abort

SC

Reset

Reset

